[1] |
Zhong, M., Kong, L., Li, N., et al. (2019) Synthesis of MOF-Derived Nanostructures and Their Applications as Anodes in Lithium and Sodium Ion Batteries. Coordination Chemistry Reviews, 388, 172-201. https://doi.org/10.1016/j.ccr.2019.02.029 |
[2] |
Mazloomi, K. and Gomes, C. (2012) Hydrogen as an Energy Carrier: Prospects and Challenges. Renewable & Sustainable Energy Reviews, 16, 3024-3033. https://doi.org/10.1016/j.rser.2012.02.028 |
[3] |
Wang, X., Chai, L., Ding, J., et al. (2019) Chemical and Morphological Transformation of MOF-Derived Bimetallic Phosphide for Efficient Oxygen Evolution. Nano Energy, 62, 745-753. https://doi.org/10.1016/j.nanoen.2019.06.002 |
[4] |
Amiinu, I.S., Liu, X., Pu, Z., et al. (2018) From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries. Ad-vanced Functional Materials, 28, Article ID: 1704638. https://doi.org/10.1002/adfm.201704638 |
[5] |
Wang, H.Y., Hung, S.F., Chen, H.Y., et al. (2015) In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. Journal of the American Chemical Society, 138, 36-39. https://doi.org/10.1021/jacs.5b10525 |
[6] |
Islam, M.M., Faisal, S.N., Akhter, T., et al. (2017) Liq-uid-Crystal-Mediated 3D Macrostructured Composite of Co/Co3O4 Embedded in Graphene: Free-Standing Electrode for Efficient Water Splitting. Particle and Particle Systems Characterization, 2017, Article ID: 1600386. https://doi.org/10.1002/ppsc.201600386 |
[7] |
Chaikittisilp, W., Torad, N.L., Li, C., et al. (2014) Synthesis of Nanoporous Carbon-Cobalt-Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal-Organic Frameworks. Chemistry—A European Journal, 20, 4217-4221. https://doi.org/10.1002/chem.201304404 |
[8] |
Baydoun, D., Li, H., Verani, C.N., et al. (2016) Efficient Water Oxidation Using CoMnP Nanoparticles. Journal of the American Chemical Society, 138, 4006-4009. https://doi.org/10.1021/jacs.6b01543 |
[9] |
Chen, Y.-Z., Zhang, R., Jiao, L., et al. (2018) Metal-Organic Framework-Derived Porous Materials for Catalysis. Coordination Chemistry Reviews, 362, 1-23. https://doi.org/10.1016/j.ccr.2018.02.008 |
[10] |
Huang, W., Ning, L., Zhang, X., et al. (2017) Metal Organic Framework g-C3N4/MIL-53(Fe) Heterojunctions with Enhanced Photocatalytic Activity for Cr(VI) Reduction under Visible Light. Applied Surface Science, 425, 107-116. https://doi.org/10.1016/j.apsusc.2017.07.050 |
[11] |
Huang, W., Jing, C., Zhang, X., et al. (2018) Integration of Plasmonic Effect into Spindle-Shaped MIL-88A Fe, Steering Charge Flow for Enhanced Visible-Light Photocatalytic Degradation of Ibuprofen. Chemical Engineering Journal, 349, 603-612. https://doi.org/10.1016/j.cej.2018.05.121 |
[12] |
Zhang, X., Li, H., Hou, F., et al. (2017) Synthesis of Highly Efficient Mn2O3 Catalysts for CO Oxidation Derived from Mn-MIL-100. Applied Surface Science, 411, 27-33. https://doi.org/10.1016/j.apsusc.2017.03.179 |
[13] |
Jiao, L., Seow, J.Y.R., Skinner, W.S., et al. (2019) Met-al-Organic Frameworks: Structures and Functional Applications. Materials Today, 27, 43-68. https://doi.org/10.1016/j.mattod.2018.10.038 |
[14] |
Pimentel, B.R., Parulkar, A., Zhou, E.K., et al. (2015) Zeo-litic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations. Chemsuschem, 7, 3202-3240. https://doi.org/10.1002/cssc.201402647 |
[15] |
Xie, F., Ren, Y., Zhou, Y.-Q., et al. (2019) Prepara-tion and Electrochemical Properties of ZIF-Skeleton Double-Shell Nanocage CoS/NiCo2S4. Chinese Journal of In-organic Chemistry, 35, 1635-1641. |
[16] |
Wu, R., Qian, X., Zhou, K., et al. (2014) Porous Spinel Zn(x)Co(3−x)O(4) Hollow Polyhedra Templated for High-Rate Lithium-Ion Batteries. Acs Nano, 8, 6297-6303. https://doi.org/10.1021/nn501783n |
[17] |
Cai, S., Zhao, C., Xin, F., et al. (2015) Nitrogen-Modified Carbon Nanostructures Derived from Metal-Organic Frameworks as High Performance Anodes for Li-Ion Batteries. Elec-trochimica Acta, 180, 852-857. https://doi.org/10.1016/j.electacta.2015.09.036 |
[18] |
Hu, L. and Chen, Q. (2014) Hollow/Porous Nanostruc-tures Derived from Nanoscale Metal-Organic Frameworks towards High Performance Anodes for Lithium-Ion Batteries. Nanoscale, 6, 1236-1257. https://doi.org/10.1039/C3NR05192G |
[19] |
Zou, F., Hu, X., Li, Z., et al. (2014) MOF-Derived Porous ZnO/ZnFe2O4/C Octahedral with Hollow Interiors for High-Rate Lithium-Ion Batteries. Advanced Materials, 26, 6622-6628. https://doi.org/10.1002/adma.201402322 |
[20] |
Ma, T.Y., Dai, S., Jaroniec, M., et al. (2014) Met-al-Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 136, 13925-13931. https://doi.org/10.1021/ja5082553 |
[21] |
Zhong, M., He, W.-W., Shuang, W., et al. (2018) Metal-Organic Framework Derived Core-Shell Co/Co3O4@ NC Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 57, 4620-4628. https://doi.org/10.1021/acs.inorgchem.8b00365 |
[22] |
Hou, Y., Li, J., Wen, Z., et al. (2013) Co3O4 Nanoparti-cles Embedded in Nitrogen-Doped Porous Carbon Dodecahedrons with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting. Nano Energy, 12, 1-8. https://doi.org/10.1016/j.nanoen.2014.11.043 |
[23] |
Wu, R., Qian, X., Rui, X., et al. (2014) Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability. Small, 10, 1932-1938. https://doi.org/10.1002/smll.201303520 |
[24] |
Wu, Z., Sun, L.P., Ming, Y., et al. (2016) Facile Synthesis and Excellent Electrochemical Performance of Reduced Graphene Oxide-Co3O4 Yolk-Shell Nanocages as a Catalyst for Oxygen Evolution Reaction. Journal of Materials Chemistry A, 4, 13534-13542. https://doi.org/10.1039/C6TA04943E |
[25] |
Wu, L., Li, Q., Wu, C.H., et al. (2015) Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 137, 7071-7074. https://doi.org/10.1021/jacs.5b04142 |