[1] |
Leopold, J.A. (2015) Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification. Trends in Cardiovascular Medicine, 25, 267-274. https://doi.org/10.1016/j.tcm.2014.10.021 |
[2] |
Rennenberg, R.J., Kessels, A.G., Schurgers, L.J., van Engelshoven, J.M., de Leeuw, P.W. and Kroon, A.A. (2009) Vascular Calcifications as a Marker of Increased Cardiovascular Risk: A Meta-Analysis. Vascular Health and Risk Management, 5, 185-197. https://doi.org/10.2147/VHRM.S4822 |
[3] |
Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M. andShanahan, C.M. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600. https://doi.org/10.1093/cvr/cvy010 |
[4] |
Shekar, C. and Budoff, M. (2018) Calcification of the Heart: Mechanisms and Therapeutic Avenues. Expert Review of Cardiovascular Therapy, 16, 527-536. https://doi.org/10.1080/14779072.2018.1484282 |
[5] |
Chesterton, L.J., Sigrist, M.K., Bennett, T., Taal, M.W. and McIntyre, C.W. (2005) Reduced Baroreflex Sensitivity Is Associated with Increased Vascular Calcification and Arterial Stiffness. Nephrology Dialysis Transplantation, 20, 1140-1147. https://doi.org/10.1093/ndt/gfh808 |
[6] |
Peres, L.A. and Percio, P.P. (2014) Mineral and Bone Disorder and Vascular Calcification in Patients with Chronic Kidney Disease. Jornal Brasileiro de Nefrologia, 36, 201-207. https://doi.org/10.5935/0101-2800.20140031 |
[7] |
Avogaro, A. and Fadini, G.P. (2015) Mechanisms of Ectopic Calcification: Implications for Diabetic Vasculopathy. Cardiovascular Diagnosis and Therapy, 5, 343-352. |
[8] |
Luong, T.T.D., Schelski, N., Boehme, B., Makridakis, M., Vlahou, A., Lang, F., Pieske, B., Alesutan, I. and Voelkl, J. (2018) Fibulin-3 Attenuates Phosphate-Induced Vascular Smooth Muscle Cell Calcification by Inhibition of Oxidative Stress. Cellular Physiology and Biochemistry, 46, 1305-1316. https://doi.org/10.1159/000489144 |
[9] |
Sun, Y., Byon, C.H., Yuan, K., Chen, J., Mao, X., Heath, J.M., Javed, A., Zhang, K., Anderson, P.G. and Chen, Y. (2012) Smooth Muscle Cell-Specific Runx2 Deficiency Inhibits Vascular Calcification. Circulation Research, 111, 543-552. https://doi.org/10.1161/CIRCRESAHA.112.267237 |
[10] |
Bjorklund, G., Svanberg, E., Dadar, M., Card, D.J., Chirumbolo, S., Harrington, D.J. and Aaseth, J. (2018) The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Current Medicinal Chemistry. https://doi.org/10.2174/0929867325666180716104159 |
[11] |
Azpiazu, D., Gonzalo, S., González-Parra, E., Egido, J. and Villa-Bellosta, R. (2018) Role of Pyrophosphate in Vascular Calcification in Chronic Kidney Disease. Nefrología, 38, 250-257. https://doi.org/10.1016/j.nefro.2017.07.005 |
[12] |
Rochette, L., Meloux, A., Rigal, E., Zeller, M., Cottin, Y. and Vergely, C. (2018) The Role of Osteoprotegerin in the Crosstalk between Vessels and Bone: Its Potential Utility as a Marker of Cardiometabolic Diseases. Pharmacology & Therapeutics, 182, 115-132. https://doi.org/10.1016/j.pharmthera.2017.08.015 |
[13] |
Jahnen-Dechent, W., Heiss, A., Schäfer, C. and Ketteler, M. (2011) Fetuin-A Regulation of Calcified Matrix Metabolism. Circulation Research, 108, 1494-1509. https://doi.org/10.1161/CIRCRESAHA.110.234260 |
[14] |
Kapustin, A.N., Davies, J.D., Reynolds, J.L., McNair, R., Jones, G.T., Sidibe, A., Schurgers, L.J., Skepper, J.N., Proudfoot, D., Mayr, M. and Shanahan, C.M. (2011) Calcium Regulates Key Components of Vascular Smooth Muscle Cell-Derived Matrix Vesicles to Enhance Mineralization. Circulation Research, 109, e1-e12. https://doi.org/10.1161/CIRCRESAHA.110.238808 |
[15] |
Dai, X.Y., Zhao, M.M., Cai, Y., Guan, Q.C., Zhao, Y., Guan, Y., Kong, W., Zhu, W.G., Xu, M.J. and Wang, X. (2013) Phosphate-Induced Autophagy Counteracts Vascular Calcification by Reducing Matrix Vesicle Release. Kidney International, 83, 1042-1051. https://doi.org/10.1038/ki.2012.482 |
[16] |
Liu, D., Cui, W., Liu, B., Hu, H., Liu, J., Xie, R., Yang, X., Gu, G., Zhang, J. and Zheng, H. (2014) Atorvastatin Protects Vascular Smooth Muscle Cells from TGF-β1-Stimulated Calcification by Inducing Autophagy via Suppression of the β-Catenin Pathway. Cellular Physiology and Biochemistry, 33, 129-141. https://doi.org/10.1159/000356656 |
[17] |
Jiang, L., Zhang, J., Monticone, R.E., Telljohann, R., Wu, J., Wang, M. and Lakatta, E.G. (2012) Calpain-1 Regulation of Matrix Metalloproteinase 2 Activity in Vascular Smooth Muscle Cells Facilitates Age-Associated Aortic Wall Calcification and Fibrosis. Hypertension, 60, 1192-1199. https://doi.org/10.1161/HYPERTENSIONAHA.112.196840 |
[18] |
Nakano-Kurimoto, R., Ikeda, K., Uraoka, M., Nakagawa, Y., Yutaka, K., Koide, M., Takahashi, T., Matoba, S., Yamada, H., Okigaki, M. and Matsubara, H. (2009) Replicative Senescence of Vascular Smooth Muscle Cells Enhances the Calcification through Initiating the Osteoblastic Transition. American Journal of Physiology: Heart and Circulatory Physiology, 297, H1673-H1684. https://doi.org/10.1152/ajpheart.00455.2009 |
[19] |
Simionescu, A., Philips, K. and Vyavahare, N. (2005) Elastin-Derived Peptides and TGF-Beta1 Induce Osteogenic Responses in Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 334, 524-532. https://doi.org/10.1016/j.bbrc.2005.06.119 |