[1] |
席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2018. |
[2] |
王玲玲. 新型电磁超材料吸波器研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2017. |
[3] |
陈曦. 超材料的电磁特性与应用研究[D]: [博士学位论文]. 北京: 国防科学技术大学, 2013. |
[4] |
Wen, Q., Zhang, H., Yang, Q., et al. (2012) A Tunable Hybrid Metamaterial Absorber Based on Vanadium Oxide Films. Journal of Physics D: Applied Physics, 45, Article ID: 235106. https://doi.org/10.1088/0022-3727/45/23/235106 |
[5] |
Naorem, R., Dayal, G., Ramakrishna, S.A., et al. (2015) Thermally Switchable Metamaterial Absorber with a VO2 Ground Plane. Optics Communications, 346, 154-157. https://doi.org/10.1016/j.optcom.2015.01.075 |
[6] |
李婧. 新型频率选择表面的研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2012. |
[7] |
李晨晨. FDTD方法在新型人工平面电磁结构设计中的应用研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2018. |
[8] |
许莹莹. 基于石墨烯器件和大带宽频率选择表面的研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2014. |
[9] |
Atwater, H.A. and Polman, A. (2010) Plasmonics for Improved Photovoltaic Devices. Nature Materials, 9, 205. https://doi.org/10.1038/nmat2629 |
[10] |
李笑笑. 基于石墨烯谐振环的可调吸波器[D]: [硕士学位论文]. 广州: 暨南大学, 2017. |
[11] |
廖昌龙. 基于石墨烯表面等离激元的电磁干涉效应研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2018. |
[12] |
Zhao, L., Niu, Q., He, Z. and Dong, S. (2018) Absorptivity Enhancement of Higher-Order Electric Sextupole Plasmonic Modes by the Out-er-Square Inner-Ring Coupled Resonators. Optical Materials Express, 8, 3359-3372. https://doi.org/10.1364/OME.8.003359 |
[13] |
Li, W., Kuang, D., Fan, F., et al. (2012) Subwavelength 𝖡-Shaped Metallic Hole Array Terahertz Filter with InSb Bar as Thermally Tunable Structure. Applied Optics, 51, 7098-7102. https://doi.org/10.1364/AO.51.007098 |
[14] |
Zhao, Q., Du, B., Kang, L., et al. (2008) Tunable Negative Permeability in an Iso-tropic Dielectric Composite. Applied Physics Letters, 92, Article ID: 051106. https://doi.org/10.1063/1.2841811 |
[15] |
Luo, C.Y., Li, Z.Z., Guo, Z.H., et al. (2015) Tunable Metamaterial Dual-Band Terahertz Absorber. Soild State Communications, 222, 32-36. https://doi.org/10.1016/j.ssc.2015.08.009 |
[16] |
Luo, C.Y., Li, D., Luo, Q., et al. (2015) Design of a Tunable Multiband Terahertz Waves Absorber. Journal of Alloys and Compounds, 652, 18-24. https://doi.org/10.1016/j.jallcom.2015.08.089 |
[17] |
Valmorra, F., Scalari, G., Maissen, C., et al. (2013) Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Grapheme to a Terahertz Meta-Materials. Nano Letters, 13, 3193. https://doi.org/10.1021/nl4012547 |
[18] |
Li, C., Zhang, C., Hu, G., et al. (2017) Electrical Dynamic Modulation of THz Radiation Based on Superconducting Metamaterials Editors-Pick. Applied Physics Letters, 111, Article ID: 092601. |
[19] |
Zhao, H., Zhou, J., Kang, L., et al. (2009) Tunable Two-Dimensional Left-Handed Material Consisting of Ferrite Rods and Metallic Wires. Optics Express, 17, 13373-13380. https://doi.org/10.1364/OE.17.013373 |
[20] |
Hang, Y., Wen, G., Zhu, W., et al. (2014) Experimental Demonstration of a Magnetically Tunable Ferrite Based Metamaterial Absorber. Optics Express, 22, 16408-16417. https://doi.org/10.1364/OE.22.016408 |
[21] |
Li, W., Wei, J., Wang, W., et al. (2016) Ferrite-Based Metamaterial Microwave Absorber with Absorption Frequency Magnetically Tunable in a Wide Range. Materials & Design, 110, 27-34. https://doi.org/10.1016/j.matdes.2016.07.118 |
[22] |
Lei, M., Feng, N., Wang, Q., et al. (2016) Magnetically Tunable Metamaterial Perfect Absorber. Journal of Applied Physics, 119, Article ID: 244504. https://doi.org/10.1063/1.4954224 |
[23] |
Paul, M.J., Tomaino, J.L., Kevek, J.W., et al. (2012) Terahertz Imaging of Inhomogeneous Electrodynamics in Single-Layer Graphene Embedded in Dielectrics. Applied Physics Letters, 101, 197. https://doi.org/10.1063/1.4749280 |
[24] |
Thongrattanasiri, S., Koppens, F.H.L. and Garcia, F.J. (2012) Complete Optical Absorption in Periodically Patterned Graphene. Physics Review Letters, 8, Article ID: 047401. https://doi.org/10.1103/PhysRevLett.108.047401 |
[25] |
Alaee, R., Farhat, M., Rockstuhl, C., et al. (2012) A Perfect Absorber Made of a Graphene Micro-Ribbon Meta-Material. Optics Express, 20, 28017-28024. https://doi.org/10.1364/OE.20.028017 |
[26] |
Andryieusk, A. and Lavrinenko, A.V. (2013) Graphene Metamaterials Based Tun-able Terahertz Absorber: Effective Surface Conductivity Approach. Optics Express, 21, 9144-9155. https://doi.org/10.1364/OE.21.009144 |
[27] |
Zhang, Y., Feng, Y., Zhu, B., et al. (2014) Graphene Based Tunable Metamaterial Absorber and Polarization Modulartion in Terahertz Frequency. Optics Express, 22, 22743-22752. https://doi.org/10.1364/OE.22.022743 |
[28] |
顾钰, 王民, 蒲明博, 胡承刚, 罗先刚. 基于石墨烯结合亚波长金属结构的太赫兹宽带动态吸收器[J]. 光电工程, 2016, 43(1): 60-64+70. |
[29] |
丁霄. 基于方向图可重构技术的相控阵大角度扫描特性研究[D]: [博士学位论文]. 成都: 电子科技大学, 2013. |
[30] |
Zhao, J., Cheng, Q., Chen, J., Qi, M.Q., Jiang, W.X. and Cui, T.J. (2013) A Tunable Metamaterial Absorber Using Varactor Dioded. New Journal of Applied Physics, 15, Article ID: 043049. https://doi.org/10.1088/1367-2630/15/4/043049 |
[31] |
Zhu, J., Li, D., Yan, S., et al. (2015) Tunable Microwave Metamaterial Absorbers Using Varactor-Loaded Split Loops. Europhysics Letters, 112, Article ID: 54002. https://doi.org/10.1209/0295-5075/112/54002 |
[32] |
Zhao, Q., Du, B., Kang, L., et al. (2007) Electrically Tunable Negative Permeability Metamaterials Based on Nematic Liquid Crystals. Applied Physics Letters, 90, Article ID: 011112. https://doi.org/10.1063/1.2430485 |
[33] |
Isic, G., Vasic, B., Zografopoulos, D.C., et al. (2015) Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals. Physics Review Applied, 3, Article ID: 064007. https://doi.org/10.1103/PhysRevApplied.3.064007 |
[34] |
Cai, X., Zhao, S., Hu, M., Xiao, J., Zhang, N. and Yang, J. (2017) Water Based Fluidic Radio Frequency Metamaterials. Applied Physics, 122, Article ID: 184101. https://doi.org/10.1063/1.4986120 |
[35] |
Odit, M., Kapitanova, P., Andryieuski, A., Belov, P. and Lavrinenko, A.V. (2016) Ex-perimental Demonstration of Water Based Tunable Metasurface. Applied Physics Letters, 109, Article ID: 011901. https://doi.org/10.1063/1.4955272 |
[36] |
Yoo, Y.J., Ju, S., Park, S.Y., Kim, Y.J., Bong, J., Lim, T., Kim, K.W., Rhee, J.Y. and Lee, Y. (2015) Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Scientific Reports, 5, Article No. 14018. https://doi.org/10.1038/srep14018 |
[37] |
Pang, Y., Wang, J., Cheng, Q., Xia, S., Zhou, X.Y., Xu, Z., Cui, T.J. and Qu, S. (2017) Thermally Tunable Water-Substrate Broadband Metamaterial Absorbers. Applied Physics Letters, 110, Article ID: 104103. https://doi.org/10.1063/1.4978205 |
[38] |
Jacobsen, R.E., Lavrinenko, A.V. and Arslanagic, S. (2018) Water-Based Metasurfaces for Effective Switching of Microwaves. IEEE Antennas and Wireless Propagation Letters, 17, 571-574. https://doi.org/10.1109/LAWP.2018.2803214 |
[39] |
Zhao, J., Wei, S., Wang, C., Chen, K., Zhu, B., Jiang, T. and Feng, Y. (2018) Broadband Microwave Absorption Utilizing Water-Based Metamaterial Structures. Optics Express, 26, 8522-8531. https://doi.org/10.1364/OE.26.008522 |
[40] |
Xie, J., Zhu, W., Ivan, D., et al. (2018) Water Metamaterial for Ultra-Broadband and Wide-Angle Absorption. Optics Express, 26, 5052-5059. https://doi.org/10.1364/OE.26.005052 |