[1] |
Grassel, O., Frommeyer, G., Derder, C., et al. (1997) Phase Transformation and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steel. Journal de Physique IV France, 5, 383-388. |
[2] |
Grässel, O., Krüger, L., Frommeyer, G. and Meyer, L.W. (2000) High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development-Properties-Application. International Journal of Plasticity, 16, 1391-1409. https://doi.org/10.1016/S0749-6419(00)00015-2 |
[3] |
Qian, L., Qian, Z., Zhang, F., et al. (2012) Microstructure and Mechanical Properties of a Low Carbon Carbide-Free Bainitic Steel Co-Alloyed with Al and Si. Material and Design, 39, 264-268. https://doi.org/10.1016/j.matdes.2012.02.053 |
[4] |
Chakraborty, J., Bhattacharjee, D. and Manna, I. (2008) Aus-tempering of Bearing Steel for Improved Mechanical Properties. Scripta Material, 59, 247-250. https://doi.org/10.1016/j.scriptamat.2008.03.023 |
[5] |
Bouaziz, O., Allain, S., Scott, C.P., Cugy, P. and Barbier, D. (2011) High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Re-lationships. Current Opinion in Solid State and Materials Science, 15, 141-168. https://doi.org/10.1016/j.cossms.2011.04.002 |
[6] |
Bouaziz, O., Allain, S. and Estrin, Y. (2010) Effect of Pre-Strain at Elevated Temperature on Strain Hardening of Twinning-Induced Plasticity Steels. Scripta Materialia, 62, 713-715. https://doi.org/10.1016/j.scriptamat.2010.01.040 |
[7] |
Dini, G., Najafizadeh, A., Ueji, R. and Monir-Vaghefi, S.M. (2010) Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel. Material Letters, 64, 15-18. https://doi.org/10.1016/j.matlet.2009.09.057 |
[8] |
Kang, S., Jung, Y.-S., Jun, J.-H. and Lee, Y.-K. (2010) Effects of Recrystallization Annealing Temperature on Carbide Precipitation, Microstructure, and Mechanical Properties in Fe-18Mn-0.6C-1.5Al TWIP Steel. Material Science and Engineering A, 527, 745-751. https://doi.org/10.1016/j.msea.2009.08.048 |
[9] |
Bouaziz, O., Scott, C.P. and Petitgand, G. (2009) Nanostructured Steel with High Work-Hardening by the Exploitation of the Thermal Stability of Mechanically Induced Twins. Scripta Mater, 60, 714-716. https://doi.org/10.1016/j.scriptamat.2009.01.004 |
[10] |
Scott, C., Allain, S., Faral, M. and Guelton, N. (2006) The Development of a New Fe-Mn-C Austenitic Steel for Automotive Applications. La Revue de Métallurgie-CIT, 103, 293-302. https://doi.org/10.1051/metal:2006142 |
[11] |
Gutierrez-Urrutia, I. and Raabe, D. (2013) Influence of Al Content and Precipitation State on the Mechanical Behavior of Austenitic High-Mn Low-Density Steels. Scripta Mate-rialia, 68, 343-347. https://doi.org/10.1016/j.scriptamat.2012.08.038 |
[12] |
Park, I.-J., Jeong, K.-H., Jung, J.-G., Lee, C.S. and Lee, Y.-K. (2012) The Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-Added Fe-18Mn-0.6C Twinning-Induced Plasticity Steels. International Journal of Hydrogen Energy, 37, 9925-9932. https://doi.org/10.1016/j.ijhydene.2012.03.100 |
[13] |
Park, K.-T., Jin, K.G., Han, S.H., et al. (2010) Stacking Fault Energy and Plastic Deformation of Fully Austenitic High Manganese Steels: Effect of Al Addition. Materials Science and Engineering A, 527, 3651-3661. https://doi.org/10.1016/j.msea.2010.02.058 |
[14] |
Jin, J.-E. and Lee, Y.-K. (2012) Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel. Acta Materialia, 60, 1680-1688. https://doi.org/10.1016/j.actamat.2011.12.004 |
[15] |
Takaki, S., Fujioka, M., Aihara, S., et al. (2004) Effect of Copper on Tensile Properties and Grain-Refinement of Steel and Its Relation to Precipitation Behavior. Materials Transactions, 45, 2239-2244. |
[16] |
Gonzalez, B.M., Castro, C.S.B., Buono, V.T.L., et al. (2003) The Influence of Copper Addition on the Formability of AISI 304 Stainless Steel. Material Science and Engineering A, 343, 51-56. https://doi.org/10.1016/S0921-5093(02)00362-3 |
[17] |
Lee, S., Kim, J., Lee, S.-J. and De Cooman, B.C. (2011) Effect of Cu Addition on the Mechanical Behavior of Austenitic Twinning-Induced Plasticity Steel. Scripta Materialia, 65, 1073-1076. https://doi.org/10.1016/j.scriptamat.2011.09.019 |
[18] |
Peng, X., Zhu, D., Hu, Z., Yi, W.F., Liu, H.J. and Wang, M.J. (2013) Stacking Fault Energy and Tensile Deformation Behavior of High-Carbon Twinning-Induced Plasticity Steels: Effect of Cu Addition. Materials and Design, 45, 518-523. https://doi.org/10.1016/j.matdes.2012.09.014 |
[19] |
张志波, 刘振宇, 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073. |
[20] |
Huang, B.X., Wang, X.D., Rong, Y.H., Wang, L. and Jin, L. (2006) Mechanical Behavior and Martensitic Transformation of Fe-Mn-Si-Al-Nb Alloy. Materials Science and Engineering A, 438-400, 306-311. https://doi.org/10.1016/j.msea.2006.02.150 |
[21] |
Scott, C., Remy, B., Collet, J.-L., et al. (2011) Precipitation Strengthening in High Manganese Austenitic TWIP Steels. International Journal of Materials Research, 102, 539-549. https://doi.org/10.3139/146.110508 |
[22] |
Hall, E.O. (1951) The Deformation and Ageing of Mild Steel: III Dis-cussion of Results. Proceedings of the Physical Society. Section B, 64, 747-753. https://doi.org/10.1088/0370-1301/64/9/302 |
[23] |
Petch, N.J. (1953) The Cleavage Strength of Polycrystals. The Journal of the Iron and Steel Institute, 174, 25-28. |
[24] |
Ueji, R., Tsuchida, N., Terada, D., et al. (2008) Tensile Prop-erties and Twinning Behavior of High Manganese Austenitic Steel with Fine-Grained Structure. Scripta Materialia, 59, 963-966. https://doi.org/10.1016/j.scriptamat.2008.06.050 |
[25] |
Dini, G., Najafizadeh, A., Ueji, R. and Monir-Vaghefi, S.M. (2010) Tensile Deformation Behavior of High Manganese Austenitic Steel: The Role of Grain Size. Materials and De-sign, 31, 3395-3402. https://doi.org/10.1016/j.matdes.2010.01.049 |
[26] |
Bouaziz, O., Allain, S. and Scott, C. (2008) Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels. Scripta Materialia, 58, 484-487. https://doi.org/10.1016/j.scriptamat.2007.10.050 |
[27] |
Lee, T., Koyama, M., Tsuzaki, K., et al. (2012) Tensile Deformation Behavior of Fe-Mn-C TWIP Steel with Ultrafine Elongated Grain Structure. Materials Letters, 75, 169-171. https://doi.org/10.1016/j.matlet.2012.02.012 |
[28] |
Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D. (2010) The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP Steel. Materials Science and Engineering A, 527, 3552-3560. https://doi.org/10.1016/j.msea.2010.02.041 |
[29] |
Saeed-Akbari, A., Imlau, J., Prahl, U. and Bleck, W. (2009) Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metallurgical and Materials Transactions A, 40, 3076-3090. https://doi.org/10.1007/s11661-009-0050-8 |
[30] |
Liu, X.C., Zhang, H.W. and Lu, K. (2013) Strain-Induced Ul-trahard and Ultrastable Nanolaminated Structure in Nickel. Science, 342, 337-340. https://doi.org/10.1126/science.1242578 |
[31] |
Rajib, K. and Satyam, S. (2018) A Novel Way to Enhance the Strength of Twinning Induced Plasticity (TWIP) Steels. Scripta Materialia, 154, 207-211. https://doi.org/10.1016/j.scriptamat.2018.05.045 |