[1] |
Wang, J.W., He, Y., Fan, F.F., et al. (2013) Two-Phase Electrochemical Lithiation in Amorphous Silicon. Nano Letters, 13, 709-715. https://doi.org/10.1021/nl304379k |
[2] |
Wu, H. and Cui, Y. (2012) Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today, 7, 414-429. https://doi.org/10.1016/j.nantod.2012.08.004 |
[3] |
Park, C., Kim, J. and Kim, H. (2010) Li-Alloy Based Anode Materials for Li Secondary Batteries. Chemical Society Reviews, 39, 3115-3141. https://doi.org/10.1039/b919877f |
[4] |
Kasavajjula, U., Wang, C. and Appleby, A. (2007) Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. Journal of Power Sources, 163, 1003-1039. https://doi.org/10.1016/j.jpowsour.2006.09.084 |
[5] |
Liu, Y., Lv, J., Fei, Y., et al. (2013) Improvement of Storage Performance of LiMn2O4/Graphite Battery with AlF3-Coated LiMn2O4. IONICS, 19, 1241-1246. https://doi.org/10.1007/s11581-013-0853-x |
[6] |
Michan, A., Parimalam, B., Leskes, M., et al. (2016) Fluoroeth-ylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials, 28, 8149-8159. https://doi.org/10.1021/acs.chemmater.6b02282 |
[7] |
Leggesse, E., Wei, T., Nachimuthu, S. and Jiang, J.C. (2016) Theoretical Study of the Reductive Decomposition of Vinylethylene Sulfite as an Additive in Lithium Ion Battery. Journal of Chinese Chemistry Society, 63, 480-487. https://doi.org/10.1002/jccs.201600076 |
[8] |
Chen, C., Lee, S., Cho, M., Kim, J. and Lee, Y. (2016) Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-Ion Batteries. ACS Applied Materials and Interfaces, 8, 2658-2665. https://doi.org/10.1021/acsami.5b10673 |
[9] |
Liu, Z., Han, S., Xu, C., et al. (2016) In Situ Crosslinked PVA-PEI Polymer Binder for Long-Cycle Silicon Anodes in Li-Ion Batteries. RSC Advances, 6, 68371-68378. https://doi.org/10.1039/C6RA12232A |
[10] |
Zeng, W., Wang, L., Peng, X., et al. (2018) Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. Advanced En-ergy Materials, 8, 1702314-1702316. https://doi.org/10.1002/aenm.201702314 |
[11] |
Xu, Z., Yang, J., Zhang, T., Nuli, Y., Wang, J.L. and Hirano, S. (2018) Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule, 2, 818-819. https://doi.org/10.1016/j.joule.2018.02.012 |
[12] |
Munaoka, T., Yan, X., Lopez, J., et al. (2018) Ionically Conduc-tive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries. Advanced Energy Materials, 8, 1703138-1703142. https://doi.org/10.1002/aenm.201703138 |
[13] |
Wang, W. and Kumta, P. (2010) Nanostructured Hybrid Sili-con/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano, 4, 2233-2241. https://doi.org/10.1021/nn901632g |
[14] |
Wu, H., Zheng, G.Y., Liu, N., Carney, T.J., Wang, C.M. and Cui, Y. (2012) Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Letters, 12, 904-909. https://doi.org/10.1021/nl203967r |
[15] |
Liu, N., Wu, H., McDowell, M.T., Yao, Y., Wang, C.M. and Cui, Y. (2012) A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 12, 3315-3321. https://doi.org/10.1021/nl3014814 |
[16] |
Yoo, J., Kim, J., Jung, Y. and Kang, K. (2012) Scalable Fabrication of Silicon Nanotubes and Their Application to Energy Storage. Advanced Materials, 24, 5452-5456. https://doi.org/10.1002/adma.201201601 |
[17] |
Ng, S., Wang, J., Wexler, D., et al. (2006) Highly Reversible Lith-ium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angewandte Chemie International Edition, 45, 6896-6899. https://doi.org/10.1002/anie.200601676 |
[18] |
Zhang, R., Du, Y., Li, D., et al. (2014) Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 26, 6749-6755. |
[19] |
Lu, Z., Liu, N., Lee, H., et al. (2015) Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS Nano, 9, 2540-2547. https://doi.org/10.1021/nn505410q |
[20] |
Zong, L., Jin, Y., Liu, C., et al. (2016) Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. Nano Letters, 16, 7210-7215. https://doi.org/10.1021/acs.nanolett.6b03567 |
[21] |
Su, J., Zhao, J., Li, L., et al. (2017) Three-Dimensional Porous Si and SiO2 with in Situ Decorated Carbon Nanotubes as Anode Materials for Li-Ion Batteries. ACS Applied Materials and Interfaces, 9, 17807-17813. https://doi.org/10.1021/acsami.6b16644 |
[22] |
Chen, S., Shen, L., Aken, P., Maier, J. and Yu, Y. (2017) Du-al-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries. Advanced Materials, 29, Article ID: 1605650. https://doi.org/10.1002/adma.201605650 |
[23] |
Botas, C., Carriazo, D., Zhang, W., Rojo, T. and Singh, G. (2016) Silicon-Reduced Graphene Oxide Self-Standing Composites Suitable as Binder-Free Anodes for Lithium-Ion Batteries. ACS Applied Materials and Interfaces, 8, 28800-28808. https://doi.org/10.1021/acsami.6b07910 |
[24] |
Huang, H., Bao, Q., Duh, J. and Chang, C.-T. (2016) Top-Down Dispersion Meets Bottom-Up Synthesis: Merging Ultranano Silicon and Graphene Nanosheets for Superior Hybrid Anodes for Lithium-Ion Batteries. Journal of Materials Chemistry A, 4, 9986-9997. https://doi.org/10.1039/C6TA03260E |
[25] |
Zhou, M., Li, X., Wang, B., et al. (2015) High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. Nano Letters, 15, 6222-6228. https://doi.org/10.1021/acs.nanolett.5b02697 |
[26] |
Zhou, J., Lan, Y., Zhang, K., et al. (2016) In Situ Growth of Carbon Nanotube Wrapped Si Composites as Anodes for High Performance Lithium ion Batteries. Nanoscale, 8, 4903-4907. https://doi.org/10.1039/C5NR08961A |
[27] |
Jeong, S., Lee, J., Ko, M., Kim, G., Park, S. and Cho, J. (2013) Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries. Nano Letters, 13, 3403-3407. https://doi.org/10.1021/nl401836c |
[28] |
Xu, Q., Li, J., Sun, J., Wan, L.-J. and Guo, Y.-G. (2017) Watermelon-Inspired, Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. Advanced Energy Materials, 7, Article ID: 1601481. https://doi.org/10.1002/aenm.201601481 |
[29] |
Chen, Y., Du, N., Zhang, H. and Yang, D.R. (2015) Facile Synthesis of Uniform MWCNT@Si Nanocomposites as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of Alloys and Compounds, 622, 966-972. https://doi.org/10.1016/j.jallcom.2014.11.032 |
[30] |
Kim, T., Mo, Y., Nahm, K. and Seung, M.Oh (2016) Carbon Nanotubes (CNTs) as a Buffer Layer in Silicon/CNTs Composite Electrodes for Lithium Secondary Batteries. Journal of Power Sources, 162, 1275-1281. https://doi.org/10.1016/j.jpowsour.2006.07.062 |
[31] |
He, W., Liang, Y., Tian, H., Zhang, S.L., Meng, Z. and Han, W.Q. (2017) A Facile in Situ Synthesis of Nanocrystal-FeSi-Embedded Si/SiOx Anode for Long-Cycle-Life Lithium-Ion Batteries. Energy Storage Materials, 8, 119-126. https://doi.org/10.1016/j.ensm.2017.05.003 |
[32] |
He, W., Tian, H., Xin, F. and Han, W.Q. (2015) Scalable Fabrication of Micro-Sized Bulk Porous Si from Fe-Si Alloy as a High Performance Anode for Lithium-Ion Batteries. Journal of Materials Chemistry A, 3, 17956-17962. https://doi.org/10.1039/C5TA04857E |