[1] |
章俊良, 蒋峰景. 燃料电池——原理关键材料和技术[M]. 上海: 上海交通大学出版社, 2014: 1-5. |
[2] |
TOYOTA, Fuel Cell Vehicles.http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html |
[3] |
Nie, Y., Li, L. and Wei, Z. (2015) Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chemical Society Reviews, 44, 2168-2201. https://doi.org/10.1039/C4CS00484A |
[4] |
Shao, M., Chang, Q., Dodelet, J.-P. and Chenitz, R. (2016) Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116, 3594-3657. https://doi.org/10.1021/acs.chemrev.5b00462 |
[5] |
Strasser, P. and Kühl, S. (2016) Dealloyed Pt-Based Core-Shell Oxygen Reduction Electrocatalysts. Nano Energy, 29, 166-177. https://doi.org/10.1016/j.nanoen.2016.04.047 |
[6] |
Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T. and Jónsson, H. (2004) Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108, 17886-17892. https://doi.org/10.1021/jp047349j |
[7] |
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F. and Nilsson, A. (2010) Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry, 2, 454-460. https://doi.org/10.1038/nchem.623 |
[8] |
Furukawa, S. and Komatsu, T. (2016) Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catalysis, 7, 735-765. https://doi.org/10.1021/acscatal.6b02603 |
[9] |
Luo, M., Sun, Y., Wang, L. and Guo, S. (2017) Tuning Multimetallic Ordered Intermetallic Nanocrystals for Efficient Energy Electrocatalysis. Advanced Energy Materials, 7, Article ID: 1602073. https://doi.org/10.1002/aenm.201602073 |
[10] |
Frommen,C. and Rösner, H. (2004) Observation of Long-Period Superstructures in Chemically Synthesised CoPt Nanoparticles. Materials Letters, 58, 123-127. https://doi.org/10.1016/S0167-577X(03)00428-2 |
[11] |
Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C., Disalvo, F.J. and Abruña, H.D. (2004) Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 126, 4043-4049. https://doi.org/10.1021/ja038497a |
[12] |
Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A. (2000) Mono-disperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 287, 1989-1992. https://doi.org/10.1126/science.287.5460.1989 |
[13] |
Kim, J., Lee, Y. and Sun, S. (2010) Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 132, 4996-4997. https://doi.org/10.1021/ja1009629 |
[14] |
Li, X., An, L., Wang, X., Li, F., Zou, R. and Xia, D. (2012) Supported Sub-5nm Pt-Fe Intermetallic Compounds for Electrocatalytic Application. Journal of Materials Chemistry, 22, 6047-6052. https://doi.org/10.1039/c2jm16504j |
[15] |
Li, Q., Wu, L., Wu, G., Su, D., Lv, H., Zhang, S., Zhu, W., Casimir, A., Zhu, H., Mendoza-Garcia, A. and Sun, S. (2015) New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 15, 2468-2473. https://doi.org/10.1021/acs.nanolett.5b00320 |
[16] |
Du, X.-X., He, Y., Wang, X.-X. and Wang, J.-N. (2016) Fi-ne-Grained and Fully Ordered Intermetallic PtFe Catalyst with Largely Enhanced Catalytic Activity and Durability. Energy & Environmental Science, 9, 2623-2632. https://doi.org/10.1039/C6EE01204C |
[17] |
Chung, D.-Y., Jun, S.-W., Yoon, G., Kwon, S.-G., Shin, D.Y., Seo, P., Yoo, J.-M., Shin, H., Chung, Y.-H., Kim, H., Mun, B.-S., Lee, K.-S., Lee, N.-S., Yoo, S.-J., Lim, D.-H., Kang, K., Sung, Y.-E. and Hyeon, T. (2015) Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 137, 15478-15485. https://doi.org/10.1021/jacs.5b09653 |
[18] |
Jung, C., Lee, C., Bang, K., Lim, J., Lee, H., Ryu, H.-J., Cho, E. and Lee, H.-M. (2017) Synthesis of Chemically Ordered Pt3Fe/C Intermetallic Electrocatalysts for Oxygen Reduction Reaction with Enhanced Activity and Durability via a Removable Carbon Coating. ACS Applied Materials & Interfaces, 9, 31806-31815. https://doi.org/10.1021/acsami.7b07648 |
[19] |
蔡业政, 骆明川, 王芳辉, 孙照楠, 朱红. 合成具有高氧还原反应催化活性的结构有序铂铁合金催化剂[J]. 电化学, 2016, 22(2): 185-191. |
[20] |
Lebedeva, M.V., Pierron-Bohnes, V., Goyhenex, C., Papaefthimiou, V., Zafeiratos, S., Nazmutdinov, R.R., Da Costa, V., Acosta, M., Zosiak, L., Kozubski, R., Muller, D. and Savinova, E.R. (2013) Effect of the Chemical Order on the Electrocatalytic Activity of Model PtCo Electrodes in the Oxygen Reduction Reaction. Electrochimica Acta, 108, 605-616. https://doi.org/10.1016/j.electacta.2013.07.038 |
[21] |
Xiong, Y., Xiao, L., Yang, Y., DiSalvo, F.J., Abruña, H.D. (2018) High-Loading Intermetallic Pt3Co/C Core-Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 30, 1532-1539. https://doi.org/10.1021/acs.chemmater.7b04201 |
[22] |
Wang, D., Xin, H.-L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J. and Abruña, H.D. (2013) Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Na-noparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nature Materials, 12, 81-87. https://doi.org/10.1038/nmat3458 |
[23] |
Cai, Y., Gao, P., Wang, F. and Zhu, H. (2017) Carbon Supported Chemi-cally Ordered Nanoparicles with Stable Pt Shell and Their Superior Catalysis toward the Oxygen Reduction Reaction. Electrochimica Acta, 245, 924-933. https://doi.org/10.1016/j.electacta.2017.04.173 |
[24] |
Jia, Q., Caldwell, K., Ramaker, D.E., Ziegelbauer, J.M., Liu, Z., Yu, Z., Trahan, M. and Mukerjee, S. (2014) In Situ Spectroscopic Evidence for Ordered Core–Ultrathin Shell Pt1Co1 Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of Physical Chemistry C, 118, 20496-20503. https://doi.org/10.1021/jp507204k |
[25] |
Li, J., Sharma, S., Liu, X., Pan, Y.-T., Spendelow, J.S., Chi, M., Jia, Y., Zhang, P., Cullen, D.A., Xi, Z., Lin, H., Yin, Z., Shen, B., Muzzio, M., Yu, C., Kim, Y.S., Peterson, A.A., More, K.L., Zhu, H. and Sun, S. (2019) Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 3, 124-135. https://doi.org/10.1016/j.joule.2018.09.016 |
[26] |
Hoshi, N., Nakamura, M. and Hitotsuyanagi, A. (2013) Active Sites for the Oxygen Reduction Reaction on the High Index Planes of Pt. Electrochimica Acta, 112, 899-904. https://doi.org/10.1016/j.electacta.2013.05.045 |
[27] |
Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X., Yao, J., Guo, J. and Huang, X. (2016) Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nature Communications, 7, Article No. 11850. https://doi.org/10.1038/ncomms11850 |
[28] |
Yarlagadda, V., Carpenter, M.K., Moylan, T.E., Kukreja, R.S., Koestner, R., Gu, W., Thompson, L. and Kongkanand, A. (2018) Boosting Fuel Cell Performance with Accessible Carbon Mesopores. ACS Energy Letters, 3, 618-621. https://doi.org/10.1021/acsenergylett.8b00186 |
[29] |
Guan, B.-Y., Yu, X.-Y., Wu, H.-B. and Lou, X.-W. (2017) Complex Nanostructures from Materials Based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 29, Article ID: 1703614. https://doi.org/10.1002/adma.201703614 |
[30] |
Wang, X.-X., Hwang, S., Pan, Y.-T., Chen, K., He, Y., Karakalos, S., Zhang, H., Spendelow, J.S., Su, D. and Wu, G. (2018) Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal-Organic Frameworks for Oxygen Reduction. Nano Letters, 18, 4163-4171. https://doi.org/10.1021/acs.nanolett.8b00978 |
[31] |
Chong, L., Wen, J., Kubal, J., Sen, F.G., Zou, J., Greeley, J., Chan, M., Barkholtz, H., Ding, W. and Liu, D.-J. (2018) Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks. Science, 362, 1276-1281. https://doi.org/10.1126/science.aau0630 |
[32] |
Wang, D., Yu, Y., Xin, H.L., Hovden, R., Ercius, P., Mundy, J.A., Chen, H., Richard, J.H., Muller, D.A. and Disalvo, F.J. (2012) Tuning Oxygen Reduction Reaction Activity via Con-trollable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts. Nano Letters, 12, 5230-5238. https://doi.org/10.1021/nl302404g |
[33] |
Wang, D., Yu, Y., Zhu, J., Liu, S., Muller, D.A. and Abruña, H.D. (2015) Morphology and Activity Tuning of Cu3Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Deal-loying. Nano Letters, 15, 1343-1348. https://doi.org/10.1021/nl504597j |
[34] |
Hodnik, N., Jeyabharathi, C., Meier, J.C., Kostka, A., Phani, K.L., Recnik, A., Bele, M., Hocevar, S., Gaberscek, M. and Mayrhofer, K.J.J. (2014) Effect of Ordering of PtCu3 Nanoparticle Structure on the Activity and Stability for the Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 16, 13610-13615. https://doi.org/10.1039/C4CP00585F |
[35] |
Bu, L., Zhang, N., Guo, S., Zhang, X., Li, J., Yao, J., Wu, T., Lu, G., Ma, J.-Y., Su, D. and Huang, X. (2016) Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science, 354, 1410-1414. https://doi.org/10.1126/science.aah6133 |
[36] |
Bu, L., Shao, Q., B, E., Guo, J., Yao, J., Huang, X. (2017) PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 139, 9576-9582. https://doi.org/10.1021/jacs.7b03510 |
[37] |
Zhang, S., Guo, S., Zhu, H., Su, D. and Sun, S. (2012) Struc-ture-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. Journal of American Chemistry Society, 134, 5060-5063. https://doi.org/10.1021/ja300708j |
[38] |
Zhu, H., Cai, Y., Wang, F., Gao, P. and Cao, J. (2018) Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions, ACS Applied Materials & Interfaces, 10, 22156-22166. https://doi.org/10.1021/acsami.8b05114 |
[39] |
Sasaki, K., Naohara, H., Choi, Y., Cai, Y., Chen, W.-F., Liu, P. and Adzic, R.R. (2012) Highly Stable Pt Monolayer on PdAu Nanoparticle Electrocatalysts for the Oxygen Reduction Re-action. Nature Communications, 3, Article No. 1115. https://doi.org/10.1038/ncomms2124 |
[40] |
Arumugam, B., Tamaki, T. and Yamaguchi, T. (2015) Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 7, 16311-16321. https://doi.org/10.1021/acsami.5b03137 |
[41] |
Kuroki, H., Tamaki, T., Matsumoto, M., Arao, M., Kubobuchi, K., Imai, H. and Yamaguchi, T. (2016) Platinum-Iron-Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research, 55, 11458-11466. https://doi.org/10.1021/acs.iecr.6b02298 |
[42] |
Tamaki, T., Minagawa, A., Arumugam, B., Kakade, B.A. and Yamaguchi, T. (2014) Highly Active and Durable Chemically Ordered Pt-Fe-Co Intermetallics as Cathode Catalysts of Membrane-Electrode Assemblies in Polymer Electrolyte Fuel Cells. Journal of Power Sources, 271, 346-353. https://doi.org/10.1016/j.jpowsour.2014.08.005 |
[43] |
Arumugam, B., Kakade, B., Tamaki, T., Arao, M., Imai, H. and Yamaguchi, T. (2014) Enhanced Activity and Durability for the Electroreduction of Oxygen at a Chemically Ordered Intermetallic PtFeCo Catalyst. RSC Advances, 4, 27510-27517. https://doi.org/10.1039/C4RA04744C |