[1] |
Atwater, H. (2011) Bending Light to Our Will. MRS Bulletin, 36, 57-62. https://doi.org/10.1557/mrs.2010.7 |
[2] |
Yu, C., Zhou, W., Liu, H., Liu, Y. and Dionysiou, D.D. (2016) Design and Fabrication of Microsphere Photocatalysts for Environmental Purification and Energy Conversion. Chemical En-gineering Journal, 287, 117-129. https://doi.org/10.1016/j.cej.2015.10.112 |
[3] |
Khoa, N.T., Kim, S. W., Yoo, D.H., Cho, S., Kim, E.-J. and Hahn, S.-H. (2015) Fabrication of Au/Graphene-Wrapped ZnO-Nanoparticle-Assembled Hollow Spheres with Effective Photoinduced Charge Transfer for Photocatalysis. ACS Applied Materials & Interfaces, 7, 3524-3531. https://doi.org/10.1021/acsami.5b00152 |
[4] |
Cho, S., Jang, J.W., Kim, J., Lee, J.S., Choi, W. and Lee, K.-H. (2011) Three-Dimensional Type II ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities. Langmuir, 27, 10243-10250. https://doi.org/10.1021/la201755w |
[5] |
Tainter, C.J. and Schatz, G.C. (2016) Reactive Force Field Modeling of Zinc Oxide Nanoparticle Formation. Journal of Physical Chemistry C, 120, 2950-2961. https://doi.org/10.1021/acs.jpcc.5b09511 |
[6] |
Lu, F., Cai, W. and Zhang, Y. (2008) ZnO Hierarchical Mi-cro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance. Advanced Functional Materials, 18, 1047-1056. https://doi.org/10.1002/adfm.200700973 |
[7] |
Yeung, K.L., Yau, S.T., Maira, A.J., Coronado, J.M., Soria, J. and Yue, P.L. (2003) The Influence of Surface Properties on the Photocatalytic Activity of Nanostructured TiO2. Journal of Catalysis, 219, 107-116. https://doi.org/10.1016/S0021-9517(03)00187-8 |
[8] |
Wang, K., Xu, J.-M. and Wang, X.-T. (2016) The Effects of ZnO Morphology on Photocatalytic Efficiency of ZnO/RGO Nanocomposites. Applied Surface Science, 360, 270-275. https://doi.org/10.1016/j.apsusc.2015.10.190 |
[9] |
孙悦, 孙思瑶, 任铁强, 等. 氧化石墨烯负载纳米ZnO光催化剂的性能研究[J]. 现代化工, 2015, 35(2): 95-98. |
[10] |
张玉婷, 安立宝, 蔡小勇. 氧化锌纳米线介电电泳组装及电学特性的实验研究[J]. 现代化工, 2018, 38(2): 102-107. |
[11] |
Singh, R., Verma, K., Patyal, A., Sharma, I., Barman, P.B. and Sharma, D. (2019) Nanosheet and Nanosphere Morphology Dominated Photocatalytic & Antibacterial Properties of ZnO Nanostructures. Solid State Science, 89, 1-14. https://doi.org/10.1016/j.solidstatesciences.2018.12.011 |
[12] |
Woan, K., Pyrgiotakis, G. and Sigmund, W. (2009) Photocatalytic Carbon-Nanotube-TiO2 Composites. Advanced Materials, 21, 2233-2239. https://doi.org/10.1002/adma.200802738 |
[13] |
Xiang, Q., Yu, J. and Jaroniec, M. (2012) Graphene-Based Semi-conductor Photocatalysts. Chemical Society Reviews, 41, 782-796. https://doi.org/10.1039/C1CS15172J |
[14] |
Xiang, Q. and Yu, J. (2013) Graphene-Based Photocatalysts for Hydrogen Generation. Journal of Physical Chemistry Letters, 4, 753-759. https://doi.org/10.1021/jz302048d |
[15] |
Kamat, P.V. (2011) Graphene Based Nanoassemblies for Energy Conversion. Journal of Physical Chemistry Letters, 2, 242-251. https://doi.org/10.1021/jz101639v |
[16] |
蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22. |
[17] |
Li, Y., Zhang, H., Liu, P., Wang, D., Li, Y. and Zhao, H. (2013) Cross-Linked g-C3N4/RGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity. Small, 9, 3336-3344. https://doi.org/10.1002/smll.201203135 |
[18] |
Liu, X., Pan, L., Zhao, Q., Lv, T., Zhu, G., Chen, T., Lu, T., Sun, Z. and Sun, C. (2012) UV-Assisted Photocatalytic Synthesis of ZnO-Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity in Reduction of Cr(VI). Chemical Engineering Journal, 183, 238-243. https://doi.org/10.1016/j.cej.2011.12.068 |
[19] |
Bu, Y., Chen, Z., Li, W. and Hou, B. (2013) Highly Efficient Pho-tocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material. ACS Applied Materials & Interfaces, 5, 12361-12368. https://doi.org/10.1021/am403149g |
[20] |
Pant, H.R., Pant, B., Kim, H.J., et al. (2013) A Green and Facile One-Pot Synthesis of Ag-ZnO/RGO Nanocomposite with Effective Photocatalytic Activity for Removal of Organic Pollutants. Ceramics International, 39, 5083-5091. https://doi.org/10.1016/j.ceramint.2012.12.003 |
[21] |
Romeiro, F.C., Rodrigues, M.A., Silva, L.A.J., Catto, A.C., da Silva, L.F., Longo, E., Nossol, E. and Lima, R.C. (2017) RGO-ZnO Nanocomposites for High Electrocatalytic Effect on Water Oxidation Obtained by Microwave-Hydrothermal Method. Applied Surface Science, 423, 743-751. https://doi.org/10.1016/j.apsusc.2017.06.221 |
[22] |
Dong, S., Li, Y., Sun, J., Yu, C., Li, Y. and Sun, J. (2014) Fac-ile Synthesis of Novel ZnO/RGO Hybrid Nanocomposites with Enhanced Catalytic Performance for Visi-ble-Light-Driven Photodegradation of Metronidazole. Materials Chemistry and Physics, 145, 357-365. https://doi.org/10.1016/j.matchemphys.2014.02.024 |
[23] |
Zhang, L., Li, N., Jiu, H., Qi, G. and Huang, Y. (2015) ZnO Reduced Graphene Oxide Nanocomposites as Efficient Photocatalysts for Photocatalytic Reduction of CO2. Ce-ramics International, 41, 6256-6262. https://doi.org/10.1016/j.ceramint.2015.01.044 |
[24] |
Han, C., Chen, Z., Zhang, N., Colmenares, J.C. and Xu, Y.-J. (2015) Hierarchically CdS Decorated 1D ZnO Nanorods-2D Graphene Hybrids: Low Temperature Synthesis and En-hanced Photocatalytic Performance. Advanced Functional Materials, 25, 221-229. https://doi.org/10.1002/adfm.201402443 |
[25] |
Reddy, T.N., Manna, J. and Rana, R.K. (2015) Polyamine Mediated Interfacial Assembly of rGO-ZnO Nanostructures: A Bio-Inspired Approach and Enhanced Photocatalytic Properties. ACS Applied Materials & Interfaces, 7, 19684-19690. https://doi.org/10.1021/acsami.5b04820 |
[26] |
兀晓文, 杜娜, 李海平, 等. 喜树碱/氧化石墨烯/类水滑石纳米杂化物的制备及表征[J]. 化学学报, 2014, 72(8): 963-969. |
[27] |
李子庆, 赫文秀, 张永强, 等. 不同功率下微波制备掺氮石墨烯及其性能研究[J]. 现代化工, 2018, 38(1): 84-88. |
[28] |
芦佳, 王辉虎, 董一帆, 等. RGO/ZnO纳米棒复合材料的合成及光催化性能[J]. 材料工程, 2016, 44(12): 48-53. |
[29] |
Yang, Y., Ren, L., Zhang, C., Huang, S. and Liu, T. (2011) Facile Fabrication of Functionalized Graphene Sheets (FGS)/ZnO Nanocomposites with Photocatalytic Property. ACS Applied Materials & Interfaces, 3, 2779-2785. https://doi.org/10.1021/am200561k |
[30] |
Guan, Z., Wang, P., Li, Q., Li, Y., Fu, X. and Yang, J. (2017) Remarkable Enhancement in Solar Hydrogen Generation from MoS2-RGO/ZnO Composite Photocatalyst by Constructing a Robust Electron Transport Pathway. Chemical Engineering Journal, 327, 397-405. https://doi.org/10.1016/j.cej.2017.06.125 |
[31] |
Priyadharsan, A., Shanavas, S., Vasanthakumar, V., Bal-amuralikrishnan, B. and Anbarasan, P.M. (2018) Synthesis and Investigation on Synergetic Effect of RGO-ZnO Deco-rated MoS2 Microflowers with Enhanced Photocatalytic and Antibacterial Activity. Colloids and Surfaces A, 559, 43-53. https://doi.org/10.1016/j.colsurfa.2018.09.034 |
[32] |
Yang, M.Q. and Xu, Y.J. (2013) Selective Photoredox Using Graphene-Based Composite Photocatalysts. Physical Chemistry Chemical Physics, 15, 19102-19118. https://doi.org/10.1039/c3cp53325e |
[33] |
薛秀玲, 樊国峰, 刘如东. 负载型TiO2-xNx的制备表征及可见光催化降解亚甲基蓝[J]. 环境化学, 2011, 30(6): 1152-1156. |
[34] |
Yang, M.-Q. and Xu, Y.-J. (2013) Basic Principles for Observing the Photosensitizer Role of Graphene in the Graphene—Semiconductor Composite Photocatalyst from a Case Study on Graphene—ZnO. The Journal of Physical Chemistry C, 117, 21724-21734. https://doi.org/10.1021/jp408400c |