[1] |
康宝林. 基于脉冲微分方程的害虫治理策略研究[D]: [博士学位论文]. 大连: 大连理工大学, 2016. |
[2] |
Ajraldi, V., Pittavino, M. and Venturino, E. (2011) Modeling Herd Behavior in Population Systems. Nonlinear Analysis Real World Applications, 12, 2319-2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 |
[3] |
Braza, P.A. (2012) Predator-Prey Dynamics with Square Root Functional Responses. Nonlinear Analysis Real World Applications, 13, 1837-1843. https://doi.org/10.1016/j.nonrwa.2011.12.014 |
[4] |
Gimmelli, G., Kooi, B.W. and Venturino, E. (2015) Ecoepidemic Models with Prey Group Defense and Feeding Saturation. Ecological Complexity, 22, 50-58. https://doi.org/10.1016/j.ecocom.2015.02.004 |
[5] |
Banerjee, M., Kooi, B.W. and Venturino, E. (2017) An Ecoepidemic Model with Prey Herd Behavior and Predator Feeding Saturation Response on Both Healthy and Diseased Prey. Mathematical Modelling of Natural Phenomena, 12, 133-161. https://doi.org/10.1051/mmnp/201712208 |
[6] |
Matia, S.N. and Alam, S. (2013) Prey-Predator Dynamics under Herd Behavior of Prey. Universal Journal of Applied Mathematics, 1, 251-257. |
[7] |
Chen, L.J. and Chen, F.D. (2015) Dynamical Analysis of Predator-Prey Model with Square Root Functional Response. Nonlinear Function Analysis, 8. |
[8] |
Sun, S.L., Guo, C.H. and Qin, C. (2016) Dynamic Behaviors of a Modified Predator-Prey Model with State Dependent Impulsive Effects. Advances in Difference Equations, 2016, 50. https://doi.org/10.1186/s13662-015-0735-9 |
[9] |
Liu, H.X. and Cheng, H.D. (2018) Dynamic Analysis of a Prey-Predator Model with State-Dependent Control Strategy and Square Root Response Function. Advances in Difference Equations, 2018, 63. https://doi.org/10.1186/s13662-018-1507-0 |
[10] |
刘琼. 红松鼠保护的数学模型[J]. 系统科学与数学, 2013, 33(9): 1083-1092. |
[11] |
陈兰荪. 害虫治理与半连续动力系统几何理论[J]. 北华大学学报(自然科学版), 2011, 12(1): 1-9. |
[12] |
Liu, Q., Huang, L.Z. and Chen, L.S. (2016) A Pest Management Model with State Feedback Control. Advances in Difference Equations, 2016, 292. https://doi.org/10.1186/s13662-016-0985-1 |
[13] |
马知恩, 周义仓. 常微分方程定性与稳定性理论[M]. 北京: 科学出版社, 2015. |