一类捕食–食饵系统的状态依赖反馈控制模型
A Predator-Prey Model with State-Dependent Feedback Control
DOI:10.12677/AAM.2018.710156,PDF,下载: 1,013浏览: 1,497科研立项经费支持
作者:白露,陈武大仁:广西大学数学与信息科学学院,广西 南宁;刘琼:钦州学院发展规划处(研究生处),广西 钦州
关键词:半连续动力系统后继函数阶一周期解Semi-Continuous Dynamic SystemsSuccessor FunctionsOrder-1 Periodic Solution
摘要:基于微分方程几何理论和非线性动力系统理论,提出一类一般化的具有平方根响应函数捕食–食饵的状态反馈控制模型,利用后继函数法分析该系统阶一周期解的存在性,得到了存在阶一周期解的充分条件。
Abstract:Based on the differential equation geometry theory and nonlinear dynamical system theory, we propose a generalized predator-prey model with square root response function and state feedback control strategy, and analyze the existence of the order-1 period solution of the system by the method of successor function, sufficient conditions for the existence of an order-1 period solution are obtained.
文章引用:白露, 刘琼, 陈武大仁. 一类捕食–食饵系统的状态依赖反馈控制模型[J]. 应用数学进展, 2018, 7(10): 1340-1348. https://doi.org/10.12677/AAM.2018.710156

参考文献

[1] 康宝林. 基于脉冲微分方程的害虫治理策略研究[D]: [博士学位论文]. 大连: 大连理工大学, 2016.
[2] Ajraldi, V., Pittavino, M. and Venturino, E. (2011) Modeling Herd Behavior in Population Systems. Nonlinear Analysis Real World Applications, 12, 2319-2338.
https://doi.org/10.1016/j.nonrwa.2011.02.002
[3] Braza, P.A. (2012) Predator-Prey Dynamics with Square Root Functional Responses. Nonlinear Analysis Real World Applications, 13, 1837-1843.
https://doi.org/10.1016/j.nonrwa.2011.12.014
[4] Gimmelli, G., Kooi, B.W. and Venturino, E. (2015) Ecoepidemic Models with Prey Group Defense and Feeding Saturation. Ecological Complexity, 22, 50-58.
https://doi.org/10.1016/j.ecocom.2015.02.004
[5] Banerjee, M., Kooi, B.W. and Venturino, E. (2017) An Ecoepidemic Model with Prey Herd Behavior and Predator Feeding Saturation Response on Both Healthy and Diseased Prey. Mathematical Modelling of Natural Phenomena, 12, 133-161.
https://doi.org/10.1051/mmnp/201712208
[6] Matia, S.N. and Alam, S. (2013) Prey-Predator Dynamics under Herd Behavior of Prey. Universal Journal of Applied Mathematics, 1, 251-257.
[7] Chen, L.J. and Chen, F.D. (2015) Dynamical Analysis of Predator-Prey Model with Square Root Functional Response. Nonlinear Function Analysis, 8.
[8] Sun, S.L., Guo, C.H. and Qin, C. (2016) Dynamic Behaviors of a Modified Predator-Prey Model with State Dependent Impulsive Effects. Advances in Difference Equations, 2016, 50.
https://doi.org/10.1186/s13662-015-0735-9
[9] Liu, H.X. and Cheng, H.D. (2018) Dynamic Analysis of a Prey-Predator Model with State-Dependent Control Strategy and Square Root Response Function. Advances in Difference Equations, 2018, 63.
https://doi.org/10.1186/s13662-018-1507-0
[10] 刘琼. 红松鼠保护的数学模型[J]. 系统科学与数学, 2013, 33(9): 1083-1092.
[11] 陈兰荪. 害虫治理与半连续动力系统几何理论[J]. 北华大学学报(自然科学版), 2011, 12(1): 1-9.
[12] Liu, Q., Huang, L.Z. and Chen, L.S. (2016) A Pest Management Model with State Feedback Control. Advances in Difference Equations, 2016, 292.
https://doi.org/10.1186/s13662-016-0985-1
[13] 马知恩, 周义仓. 常微分方程定性与稳定性理论[M]. 北京: 科学出版社, 2015.

为你推荐



Baidu
map