[1] |
Gow, N.A.R., and Netea, M.G. (2016) Medical Mycology and Fungal Immunology: New Research Perspectives Addressing a Major World Health Challenge. Philosophical Transactions of the Royal Society B Biological Sciences, 371, 20150462. https://doi.org/10.1098/rstb.2015.0462 |
[2] |
Wager, L.C.M., Hole, C.R., Wozniak, K.L. and Wormley Jr., F.L. (2016) Cryptococcus and Phagocytes: Complex Interactions That Influence Disease Outcome. Frontiers in Microbiology, 7, 105. https://doi.org/10.3389/fmicb.2016.00105 |
[3] |
魏丹. 医院念珠菌感染的临床分布及耐药性[J]. 中国实用医药, 2016(1): 166-167. |
[4] |
Tan, B.H., Chakrabarti, A., Li, R.Y., et al. (2015) Incidence and Species Distribution of Candidaemia in Asia: A Laboratory-Based Surveillance Study. Clinical Microbiology & Infection the Official Publication of the European Society of Clinical Microbiology & Infectious Diseases, 21, 946-953. https://doi.org/10.1016/j.cmi.2015.06.010 |
[5] |
Shen, Y.Z. and Zhang, Y.X. (2010) Candida glabrata: Epidemiology and Mechanism of Antifungal Resistance. Chinese Journal of Infection & Chemotherapy, 10, 59-62. |
[6] |
陈建魁, 牟兆钦. 白色念珠菌感染的分子生物学诊断研究进展[J]. 军事医学, 1997(1): 67-70. |
[7] |
莫翼军, 翁儿, 郭飞, 等. 白色念珠菌快速免疫层析法的临床应用[J]. 中国卫生检验杂志, 2016(9): 1254-1255. |
[8] |
孙勇, 李言飞. 国内真菌临床检验技术的研究进展[J]. 检验医学与临床, 2010, 7(5): 454-457. |
[9] |
Cairns, T.C., Studholme, D.J., Talbot, N.J., et al. (2016) New and Improved Techniques for the Study of Pathogenic Fungi. Trends in Microbiology, 24, 35. https://doi.org/10.1016/j.tim.2015.09.008 |
[10] |
闫金坤, 刘建钗, 刘彦威, 等. 鸡白色念珠菌五种染色方法的比较研究[J]. 中国兽医科学, 2016(7): 905-910. |
[11] |
De Respinis, S., Tonolla, M., Pranghofer, S., et al. (2013) Identification of Dermatophytes by Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. Medical Mycology, 51, 514. https://doi.org/10.3109/13693786.2012.746476 |
[12] |
Saracli, M.A., Fotherqill, A.W., Sutton, D.A., et al. (2015) Detection of Triazole Resistance among Candida species by Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). Medical Mycology, 53, 736-742. https://doi.org/10.1093/mmy/myv046 |
[13] |
Perlin, D.S., and Wiederhold, N.P. (2017) Culture-Independent Molecular Methods for Detection of Antifungal Resistance Mechanisms and Fungal Identification. Journal of Infectious Diseases, 216, S458. https://doi.org/10.1093/infdis/jix121 |
[14] |
Liu, W., Tan, J., Sun, J., et al. (2014) Invasive Candidiasis in Intensive Care Units in China: in Vitro Antifungal Susceptibility in the China-SCAN Study. Journal of Antimicrobial Chemotherapy, 69, 162-167. https://doi.org/10.1093/jac/dkt330 |
[15] |
Wisplinghoff, H., Seifert, H., Wenzel, R.P., et al. (2003) Current Trends in the Epidemiology of Nosocomial Bloodstream Infections in Patients with Hematological Malignancies and Solid Neoplasms in Hospitals in the United States. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 36, 1103. |
[16] |
李凌华, 雷华丽, 唐小平. 我国机会性致病真菌的耐药现状[J]. 国际流行病学传染病学杂志, 2016, 43(6): 412-415. |
[17] |
刘君玲, 孙贺元, 王树英. 2008-2012年医院重症监护室念珠菌感染情况分析[J]. 中华流行病学杂志, 2014, 35(3): 326-328. |
[18] |
Li, Z.H., Kong, Q.T. and Deng, L. (2015) Distribution and Drug Susceptivility Analysis of 290 strains of Deep Fungal Infections. Journal of Practical Dermatology, 8, 167-170. |
[19] |
Pfaller, M.A. (2012) Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. American Journal of Medicine, 125, S3. https://doi.org/10.1016/j.amjmed.2011.11.001 |
[20] |
Berkow, E.L. and Lockhart, S.R. (2017) Fluconazole Resistance in Candida Species: A Current Perspective. Infection & Drug Resistance, 10, 237-245. https://doi.org/10.2147/IDR.S118892 |
[21] |
Rocha, M.F., Bandeira, S.P., de Alencar, et al. (2017) Azole Resistance in Candida albicans from Animals: Highlights on Efflux Pump Activity and Gene Overexpression. Mycoses, 60, 462-468. https://doi.org/10.1111/myc.12611 |
[22] |
王威, 邵龙, 郑娜, 等. 外排转运蛋白介导的抗真菌药物耐药研究进展[J]. 现代生物医学进展, 2017, 17(12): 2377-2380. |
[23] |
Coste, A.T., Crittin, J., Bauser, C., et al. (2009) Functional Analysis of Cis- and Trans-Acting Elements of the Candida albicans cdr2 Promoter with a Novel Promoter Reporter System. Eukaryotic Cell, 8, 1250-1267. https://doi.org/10.1128/EC.00069-09 |
[24] |
Siikala, E., Rautemaa, R., Richardson, M., et al. (2010) Persistent Candida albicans Colonization and Molecular Mechanisms of Azole Resistance in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (Apeced) Patients. Journal of Antimicrobial Chemotherapy, 65, 2505-2513. https://doi.org/10.1093/jac/dkq354 |
[25] |
Mogavero, S., Tavanti, A., Senesi, S., et al. (2011) Differential Requirement of the Transcription Factor mcm1 for Activation of the Candida albicans Multidrug Efflux Pump mdr1 by Its Regulators mrr1 and cap1. Antimicrobial Agents & Chemotherapy, 55, 2061-2066. https://doi.org/10.1128/AAC.01467-10 |
[26] |
Souza, A.C.R., Fuchs, B.B., Pinhati, H.M.S., et al. (2015). Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and in Vivo Impact in Infected Galleria Mellonella Larvae. Antimicrobial Agents & Chemotherapy, 59, 6581-6587. https://doi.org/10.1128/AAC.01177-15 |
[27] |
Zhang, L., Xiao, M., Watts, M.R., et al. (2015) Development of Fluconazole Resistance in a Series of Candida parapsilosis Isolates from a Persistent Candidemia Patient with Prolonged Antifungal Therapy. Bmc Infectious Diseases, 15, 340. https://doi.org/10.1186/s12879-015-1086-6 |
[28] |
Noël, T. (2012). The Cellular and Molecular Defense Mechanisms of the Candida Yeasts against Azole Antifungal Drugs. Journal De Mycologie Médicale, 22, 173. https://doi.org/10.1016/j.mycmed.2012.04.004 |
[29] |
Coste, A., Turner, V., Ischer, F., et al. (2006) A Mutation in Tac1p, a Transcription Factor Regulating Cdr1 and Cdr2, Is Coupled with Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics, 172, 2139-2156. https://doi.org/10.1534/genetics.105.054767 |
[30] |
Dunkel, N., JuliaBlaß, Rogers, P.D. and Morschhäuser, J. (2008) Mutations in the Multidrug Resistance Regulator Mrr1, Followed by loss of Heterozygosity, Are the Main Cause of Mdr1 Overexpression in Fluconazole-Resistant Candida albicans Strains. Molecular Microbiology, 69, 827-840. https://doi.org/10.1111/j.1365-2958.2008.06309.x |
[31] |
Catarina, C., Jonathan, R., Miranda, I.M., et al. (2016) Clotrimazole Drug Resistance in Candida glabrataclinical Isolates Correlates with Increased Expression of the Drug: H + Antiporters Cgaqr1, Cgtpo1-1, Cgtpo3, and Cgqdr2. Frontiers in Microbiology, 7, 74. |
[32] |
Sélène, F., Françoise, I., David, C., et al. (2009) Gain of Function Mutations in Cgpdr1 of Candida glabratanot only Mediate Antifungal Resistance but also Enhance Virulence. PLOS Pathogens, 5, e1000268. https://doi.org/10.1371/journal.ppat.1000268 |
[33] |
Flowers, S.A., Barker, K.S., Berkow, E.L., et al. (2012) Gain-of-Function Mutations in upc2 are a Frequent Cause of erg11 Upregulation in Azole-Resistant Clinical Isolates of Candida albicans. Eukaryotic Cell, 11, 1289-1299. https://doi.org/10.1128/EC.00215-12 |
[34] |
Morio, F., Loge, C., Besse, B., et al. (2010) Screening for Amino Aacid Substitutions in the Candida albicans erg11 Protein of Azole-Susceptible and Azole-Resistant Clinical Isolates: New Substitutions and a Review of the Literature. Diagnostic Microbiology & Infectious Disease, 66, 373-384. https://doi.org/10.1016/j.diagmicrobio.2009.11.006 |
[35] |
Marichal, P., Koymans, L., Willemsens, S., et al. (1999) Contribution of Mutations in the Cytochrome p450 14 Alpha-Demethylase (erg11p, cyp51p) to Azole Resistance in Candida albicans. Microbiology, 145, 2701-2713. https://doi.org/10.1099/00221287-145-10-2701 |
[36] |
李莉, 苏维奇. 白色假丝酵母菌ERG11基因突变与唑类抗真菌药物耐药的关系[J]. 中华实用诊断与治疗杂志, 2011, 25(9): 870-872. |
[37] |
Wu, Y., Gao, N., Li, C., et al. (2017) A Newly Identified Amino Acid Substitution t123i in the 14α-demethylase (erg11p) of Candida albicans Confers Azole Resistance. Fems Yeast Research, 17. https://doi.org/10.1093/femsyr/fox012 |
[38] |
王明永, 翟晶晶, 左萌洁, 等. 白色假丝酵母菌对氟康唑耐药性及Erg11基因突变分析[J]. 中华医院感染学杂志, 2015(11): 2401-2404. |
[39] |
Scorzoni, L., de Paula, E, Silva, A.C., et al. (2017) Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 8, 36. https://doi.org/10.3389/fmicb.2017.00036 |
[40] |
Tan, J., Zhang, J., Chen, W., et al. (2015) The A395t mutation in erg11 gene Confers Fluconazole Resistance in Candida tropicalis Causing Candidemia. Mycopathologia, 179, 213-218. https://doi.org/10.1007/s11046-014-9831-8 |
[41] |
Vincent, B.M., Lancaster, A.K., Scherzshouval, R., et al. (2013) Fitness Trade-Offs Restrict the Evolution of Resistance to Mmphotericin b. PLoS Biology, 11, e1001692. https://doi.org/10.1371/journal.pbio.1001692 |
[42] |
Vandeputte, P., Tronchin, G., Bergès, T., et al. (2007) Reduced Susceptibility to Polyenes Associated with a Missense Mutation in the erg6 gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth. Antimicrobial Agents & Chemotherapy, 51, 982-990. https://doi.org/10.1128/AAC.01510-06 |
[43] |
Branco, J., Ola, M., Silva, R.M., et al. (2017) Impact of erg3 Mutations and Expression of Ergosterol Genes Controlled by upc2 and ndt80 in Candida parapsilosis Azole Resistance. Clinical Microbiology & Infection, 23, 575.e1-575.e8. https://doi.org/10.1016/j.cmi.2017.02.002 |
[44] |
Vandeputte, P., Ferrari, S. and Coste, A.T. (2011) Antifungal Resistance and New Strategies to Control Fungal Infections. International Journal of Microbiology, 2012, Article ID: 713687. |
[45] |
Perlin, D.S. (2015) Echinocandin Resistance in Candida. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 61, S612. https://doi.org/10.1093/cid/civ791 |
[46] |
Garciaeffron, G., Park, S. and Perlin, D.S. (2009) Correlating Echinocandin Mic and Kinetic Inhibition of fks1 Mutant Glucan Synthases for Candida albicans: Implications for Interpretive Breakpoints. Antimicrobial Agents & Chemotherapy, 53, 112-122. https://doi.org/10.1128/AAC.01162-08 |
[47] |
Perlin, D.S. (2007) Resistance to Echinocandin-Class Antifungal Drugs. Drug Resistance Updates Reviews & Commentaries in Antimicrobial & Anticancer Chemotherapy, 10, 121-130. https://doi.org/10.1016/j.drup.2007.04.002 |
[48] |
Garcia-Effron, G., Katiyar, S.K., Park, S., et al. (2008) A Naturally Occurring Proline-to-Alanine Amino Acid Change in fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis Accounts for Reduced Echinocand in Susceptibility. Antimicrob Aqents Chemother, 52, 2305-2312. https://doi.org/10.1128/AAC.00262-08 |
[49] |
Dominique, S. (2016) Emerging Threats in Antifungal-Resistant Fungal Pathogens. Frontiers in Medicine, 3, 11. |
[50] |
Taff, H.T., Mitchell, K.F., Edward, J.A., et al. (2013) Mechanisms of Candida Biofilm Drug Resistance. Future Microbiology, 8, 1325-1327. https://doi.org/10.2217/fmb.13.101 |
[51] |
Ramage, G., Robertson, S.N. and Williams, C. (2014) Strength in Numbers: Antifungal Strategies against Fungal Biofilms. International Journal of Antimicrobial Agents, 43, 114-120. https://doi.org/10.1016/j.ijantimicag.2013.10.023 |
[52] |
Finkel, J.S. and Mitchell, A.P. (2011) Genetic Control of Candida albicans Biofilm Development. Nature Reviews Microbiology, 9, 109-118. https://doi.org/10.1038/nrmicro2475 |
[53] |
Flemming, H.C. and Wingender, J. (2010) The Biofilm Matrix. Nature Reviews Microbiology, 8, 623-633. https://doi.org/10.1038/nrmicro2415 |
[54] |
Chandra, J. and Mukherjee, P.K. (2015) Candida Biofilms: Development, Architecture, and Resistance. Microbiology Spectrum, 3. https://doi.org/10.1128/microbiolspec.MB-0020-2015 |
[55] |
Ramage, G., Bachmann, S., Patterson, T.F., et al. (2002) Investigation of Multidrug Efflux Pumps in Relation to Fluconazole Resistance in Candida albicans Biofilms. Journal of Antimicrobial Chemotherapy, 49, 973-980. https://doi.org/10.1093/jac/dkf049 |
[56] |
Robbins, N., Uppuluri, P., Nett, J., et al. (2011) Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLOS Pathogens, 7, e1002257. https://doi.org/10.1371/journal.ppat.1002257 |
[57] |
Zhao, J. (2016) Update on the Fungal Biofilm Drug Resistance and Its Alternative Treatment. Journal of Biosciences & Medicines, 4, 37-47. |
[58] |
Martins, M., Uppuluri, P., Thomas, D.P., et al. (2010) Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and Its Contribution to Biofilms. Mycopathologia, 169, 323-331. https://doi.org/10.1007/s11046-009-9264-y |
[59] |
Lewis, K. (2001) Riddle of Biofilm Resistance. Antimicrobial Agents & Chemotherapy, 45, 999-1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001 |
[60] |
Whaley, S.G., Berkow, E.L., Rybak, J.M., et al. (2016) Azole Antifungal Resistance in Candida albicans and Emerging Non-Albicans Candida Species. Frontiers in Microbiology, 7, 2173. |
[61] |
Anderson, T.M., Clay, M.C., Cioffi, A.G., et al. (2014) Amphotericin Forms an Extramembranous and FungicidalSterol Sponge. Nature Chemical Biology, 10(5, 400-406. https://doi.org/10.1038/nchembio.1496 |
[62] |
Liu, J.Y., Shi, C., Wang, Y., et al. (2015) Mechanisms of Azole Resistance in Candida albicans Clinical Isolates from Shanghai, China. Research in Microbiology, 166, 153-161. https://doi.org/10.1016/j.resmic.2015.02.009 |
[63] |
Martel, C.M., Parker, J.E., Bader, O., et al. (2010) Identification and Characterization of four Azole-Resistant erg3 Mutants of Candida albicans. Antimicrobial Agents & Chemotherapy, 54, 4527-4533. https://doi.org/10.1128/AAC.00348-10 |
[64] |
Hope, W. W., Tabernero, L., Denning, D.W., et al. (2004) Molecular Mechanisms of Primary Resistance to Flucytosine in Candida albicans. Antimicrobial Agents & Chemotherapy, 48, 4377-4386. https://doi.org/10.1128/AAC.48.11.4377-4386.2004 |
[65] |
Edlind, T.D. and Katiyar, S.K. (2010) Mutational Analysis of Flucytosine Resistance in Candida glabrata. Antimicrobial Agents & Chemotherapy, 54, 4733-4738. https://doi.org/10.1128/AAC.00605-10 |
[66] |
Ostroskyzeichner, L., Casadevall, A., Galgiani, J.N., et al. (2010) An Insight into the Antifungal Pipeline: Selected New Molecules and Beyond. Nature Reviews. Drug Discovery, 9, 719-727. https://doi.org/10.1038/nrd3074 |
[67] |
Cowen, L.E. and Steinbach, W.J. (2008) Stress, Durgs, and Evolution: The Role of Cellular Signaling in Fungal Drug Resistance. Eukaryotic Cell, 7, 747-764. https://doi.org/10.1128/EC.00041-08 |
[68] |
Ran, Y., Chen, S., Dai, Y., et al. (2015) Successful Treatment of Oral Itraconazole for Infantile Hemangiomas: A Case Series. Journal of Dermatology, 42, 202-206. https://doi.org/10.1111/1346-8138.12724 |
[69] |
Liu, R., Li, J., Zhang, T., et al. (2014) Itraconazole Suppresses the Growth of Glioblastoma through Induction of Autophagy: Involvement of Abnormal Cholesterol Trafficking. Autophagy, 10, 1241-1255. https://doi.org/10.4161/auto.28912 |
[70] |
Denning, D.W. (2003) Echinocandin Antifungal Drugs. The Lancet, 362, 1142-1151. https://doi.org/10.1016/S0140-6736(03)14472-8 |
[71] |
Biswas, C., Chen, S.C., Halliday, C., et al. (2017) Identification of Genetic Markers of Resistance to Ehinocandins, Azoles and 5-Fluorocytosine in Candida glabrata by Next-Generation Sequencing: A Feasibility Study. Clinic Microbiology and Infection, 23, 676.e7-676.e10. https://doi.org/10.1016/j.cmi.2017.03.014 |
[72] |
Wu, S., Wang, Y., Liu, N., et al. (2017) Tackling Fungal Resistance by Biofilm Inhibitors. Journal of Medicinal Chemistry, 60, 2193-2211. https://doi.org/10.1021/acs.jmedchem.6b01203 |
[73] |
Santos, E. and Levitz, S.M. (2014) Fungal Vaccines and Im-munotherapeutics. Cold Spring Harbor Perspectives in Medicine, 4, a019711. https://doi.org/10.1101/cshperspect.a019711 |
[74] |
Chen, X., Ren, B., Chen, M., et al. (2014) ASDCD: Antifungal Synergistic Drug Combination Database. PLoS ONE, 9, e86499. https://doi.org/10.1371/journal.pone.0086499 |
[75] |
Kathwatel, G.H. and Karuppayi, S.M. (2016) Tramadol, an Opioid Receptor Agonist: An Inhibitor of Growth, Morphogenesis, and Biofilm Formation in the Human Pathogen, Candida albicans. Assay & Drug Development Technologies, 14, 567-572. https://doi.org/10.1089/adt.2016.760 |
[76] |
Li, D.D., Zhao, L.X., Mylonakis, E., et al. (2014) In Vitro and in Vivo Activities of Pterostilbene against Candida albicans Biofilms. Antimicrobial Agents & Chemotherapy, 58, 234423-234455. https://doi.org/10.1128/AAC.01583-13 |
[77] |
Lockhart, S.R., Etienne, K.A., Vallabhaneni, S., et al. (2017) Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 64, 134-140. https://doi.org/10.1093/cid/ciw691 |
[78] |
Parenterocha, J.A., Bailão, A.M., Amaral, C.A., et al. (2017) Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators of Inflammation, 2017, Article ID: 9870679. |