[1] |
Jopling, C.L., Norman, K.L. and Sarnow, P. (2006) Positive and Negative Modulation of Viral and Cellular mRNAs by Liver-Specific microRNA miRNA-122. Cold Spring Harbor Symposia on Quantitative Biology, 71, 369-376. https://doi.org/10.1101/sqb.2006.71.022 |
[2] |
Shu, X.L., Fan, C.B., Long, B., Zhou, X. and Wang, Y. (2016) The Anti-Cancer Effects of Cisplatin on Hepatic Cancer Are Associated with Modulation of miRNA-21 and miRNA-122 Expression. European Review for Medical and Pharmacological Sciences, 20, 4459-4465. |
[3] |
Bandopadhyay, M., Sarkar, N., Datta, S. and Das, D. (2016) A Pal Hepatitis B virus X Protein Mediated Suppression of miRNA-122 Expression Enhances Hepatoblastoma Cell Proliferation through Cyclin G1-p53 Axis. Infectious Agents and Cancer, 11, 40. https://doi.org/10.1186/s13027-016-0085-6 |
[4] |
Girard, M., Jacquemin, E., Munnich, A., et al. (2008) miRNA-122, a Paradigm for the Role of microRNA in the Liver. Journal of Hepatology, 48, 648-659. https://doi.org/10.1016/j.jhep.2008.01.019 |
[5] |
Tsai, W.C., Hsu, P.W., Lai, T.C., et al. (2009) MicroRNA-122, A Tumor Suppressor microRNA that Regulates Intrahepatic Metastasis of Hepatocellular Carcinoma. Hepatology, 49, 1571-1582. https://doi.org/10.1002/hep.22806 |
[6] |
Dallman, M.J., Porter, A.C., Larsen, C.P., et al. (1989) Lymphokine Production in Al-lografts-Analysis of RNA by Northern Blotting. Transplantation Proceedings, 21, 296-298. |
[7] |
Kwok, S. and Higuchi, R. (1989) Avoiding False Positives with PCR. Nature, 339, 237-238. |
[8] |
Zhou, H., Chen, Q., Tan, W. Qiu, Z. and Li, S. (2017) Integrated Clinicopathological Features and Gene Microarray Analysis of Pancreatic Neuroendocrine Tumors. Gene, 625, 72-77. https://doi.org/10.1016/j.gene.2017.05.009 |
[9] |
Mori, Y. and Notomi, T. (2009) Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Accurate, and Cost-Effective Diagnostic Method for Infectious Diseases. Journal of Infection and Chemotherapy, 15, 62-69. https://doi.org/10.1007/s10156-009-0669-9 |
[10] |
Zhang, Y., Yang, L., Lin, C., Guo, L. et al. (2015) Fluorescence Aptasensor for Ochratoxin A in the Food Samples Based on Hyperbranched Rolling Circle Amplification. Analytical Methods, 53, 250-252. https://doi.org/10.1039/C5AY01182E |
[11] |
Brasino, M.D. and Cha, J.N. (2015) Isothermal Rolling Circle Amplification of Virus Genomes for Rapid Antigen Detection and Typing. Analyst, 140, 5138-5144. https://doi.org/10.1039/C5AN00721F |
[12] |
Lee, S.J., Cho, Y.H., Kim, C.S., et al. (2004) Screening for Chlamydia and Gonorrhea by Strand Displacement Amplification in Homeless Adolescents Attending Youth Shelters in Korea. Journal of Korean Medical Science, 19, 495-500. https://doi.org/10.3346/jkms.2004.19.4.495 |
[13] |
Wen, Y.Q., Xu, Y., Mao, X.H., Wei, Y.L., Song, H.Y., Chen, N., Huang, Q., Fan, C.H. and Li, D. (2012) DNAzyme-Based Rolling-Circle Amplification DNA Machine for Ultrasensitive Analysis of MicroRNA in Drosophila Larva. Analytical Chemistry, 84, 7664-7669. https://doi.org/10.1021/ac300616z |
[14] |
Zhao, Y.X., Chen, F., Li, Q., Wang, L.H. and Fan, C.H. (2015) Isothermal Amplification of Nucleic Acids. Chemical Reviews, 115, 12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428 |
[15] |
Wang, M., Fu, Z.L., Li, B.C., Zhou, Y.L., Yin, H.S. and Ai, S.Y. (2014) One-Step, Ultrasensitive, and Electrochemical Assay of MicroRNAs Based on T7 Exonuclease Assisted Cyclic Enzymatic Amplifi-cation. Analytical Chemistry, 86, 5606-5610. https://doi.org/10.1021/ac5010376 |
[16] |
Shi, X.M., Fan, G.C., Shen, Q.M. and Zhu, J.J. (2016) Photoelectrochemical DNA Biosensor Based on Dual-Signal Amplification Strategy Integrating Inorganic-Organic Na-nocomposites Sensitization with λ-Exonuclease-Assisted Target Recycling. ACS Applied Material & Interfaces, 8, 35091-35098. https://doi.org/10.1021/acsami.6b14466 |
[17] |
Deng, R.J., Zhang, K.X. and Li, J.H. (2017) Isothermal Amplification for Mi-croRNA Detection: From the Test Tube to the Cell. Accounts of Chemical Research, 50, 1059-1068. https://doi.org/10.1021/acs.accounts.7b00040 |
[18] |
Zhuang, J.Y., Lai, W.Q., Xu, M.D., Zhou, Q. and Tang, D.P. (2015) Plas-monic AuNP/g-C3N4 Nanohybrid-Based Photoelectrochemical Sensing Platform for Ultrasensitive Monitoring of Polynucleotide Kinase Activity Accompanying Dnazyme-Catalyzed Precipitation Amplification. ACS Applied Material & Interfaces, 7, 8330-8338. https://doi.org/10.1021/acsami.5b01923 |
[19] |
Qian, Y., Fan, T.T., Wang, P., Zhang, X., Luo, J.J., Zhou, F.Y., et al. (2017) A Novel Label-Free Homogeneous Electrochemical Immunosensor Based on Proximity Hybridization-Triggered Isothermal Exponential Amplification Induced G-Quadruplex Formation. Sensors and Actuators B: Chemical, 248, 187-194. https://doi.org/10.1016/j.snb.2017.03.152 |
[20] |
Yang, C.-T., Pourhassan-Moghaddam, M., Wu, L., Bai, P. and Thierry, B. (2017) Ultrasensitive Detection of Cancer Prognostic miRNA Biomarkers Based on Surface Plasmon Enhanced Light Scattering. ACS Sensors, 2, 635-640. https://doi.org/10.1021/acssensors.6b00776 |
[21] |
Lv, S.F., Chen, F., Chen, C.Y., Chen, X.M., Gong, H. and Cai, C.Q. (2017) A Novel CdTe Quantum Dots Probe Amplified Resonance Light Scattering Signals to Detect MicroRNA-122. Talanta, 165, 659-663. https://doi.org/10.1016/j.talanta.2017.01.020 |
[22] |
Bi, S., Chen, M., Jia, X.Q. and Dong, Y. (2015) A Hot-Spot-Active Magnetic Graphene Oxide Substrate for MicroRNA Detection Based on Cascaded Chemiluminescence Resonance Energy Transfer. Nanoscale, 7, 3745-3753. https://doi.org/10.1039/C4NR06603K |
[23] |
Bi, S., Yue, S.Z., Song, W.L. and Zhang, S.S. (2016) A Target-Initiated DNA Net-work Caged on Magnetic Particles for Amplified Chemiluminescence Resonance Energy Transfer Imaging of MicroRNA and Targeted Drug Delivery. Chemical Communication, 52, 12841-12844. https://doi.org/10.1039/C6CC05187A |