抛物型方程的反系数问题研究
Inverse Coefficient Problems for a Parabolic Equation
摘要: 研究了一类抛物型方程的反系数问题,利用变分方法获得了方程弱解的存在性与唯一性,利用Schauder不动点定理得到了反系数问题解的存在性。
Abstract: This paper is devoted to a class of inverse coefficient problems for a Parabolic Equation, We obtain an existence and uniqueness theorem of weak solutions. Using the theories of Schauder Fixed-Point Theorem, an existence theorem is established for the inverse coefficient problems solutions.
文章引用:肖翠娥, 许友军. 抛物型方程的反系数问题研究[J]. 理论数学, 2011, 1(2): 144-148. http://dx.doi.org/10.12677/pm.2011.12028

参考文献

[1] V. L. Kamynin, A. B. Kostin. Two inverse problems of finding a coefficient in a parabolic equation. Differential Equations, 2010, 46(3): 375-386.
[2] V. L. kamynin. On the inverse of determining the leading coefficient in parabolic equations. Matematicheskie Zimetki, 2008, 84(1): 48-58.
[3] Z.-C. Deng, L. Yang, J.-N. Yu, and G.-W. Luo. Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method. Journal of Mathematical Analysis and Applications, 2010, 362(1): 210-223.
[4] A. I. Prilepko, D. S. Tkachenko. Well-posedness of the inverse source problem for parabolic systems. Differential Equations, 2004, 40(11): 1619-1626.
[5] Z. H. Liu. Identification of parameters in semilinear parabolic equations. Acta Mathematica Scientia, 1999, 19(2): 175-180.
[6] A. G. Fatullayev, S. Cula. An iterative procedure for determining an unknown spacewise-dependent coefficient in a parabolic equation. Applied Mathematics Letters, 2009, 22(7): 1033-1037.
[7] W. H. Yu. Inverse problems in partial differential equations. Tianjin: Nankai University, 1989.
[8] 王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009: 210-214.
[9] 伍卓群, 尹景学, 王春朋. 椭圆与抛物型方程引论[M]. 北京:科学出版社, 2003.
[10] E. Zeidler. Nonlinear functional analysis and its applications II A/B. New York: Springer, 1990.

为你推荐



Baidu
map