四元数值可允许小波变换及Weyl变换
Quaternion-Valued Admissible Wavelet Transform and Weyl Transform
DOI:10.12677/PM.2015.55031,PDF,HTML,XML,下载: 2,676浏览: 9,768国家自然科学基金支持
作者:刘 茵:北京师范大学数学科学学院,数学与复杂系统教育部重点实验室,北京
关键词:四元数可允许小波Weyl变换QuaternionAdmissible WaveletWeyl Transform
摘要: 本文研究了一种与特殊的Fourier变换相关的四元数值可允许小波变换,给出了此类可允许小波变换的一些性质,然后定义了与其相关的Weyl变换,证明当1≤p≤2时,Weyl算子Wσ是有界的。
Abstract:In this paper, we study one kind of quaternion-valued admissible wavelet transform related to a special Fourier transform. We present some properties of this kind of the admissible wavelet transform. Then, we define the Weyl transform associated with the quaternion-valued admissible wavelet transform, and prove that the Weyl operators Wσare bounded when 1≤ p≤2
文章引用:刘茵, 赵纪满. 四元数值可允许小波变换及Weyl变换[J]. 理论数学, 2015, 5(5): 219-226. http://dx.doi.org/10.12677/PM.2015.55031

1. 引言及预备知识

四元数[1] 是Clifford代数的一种,在所有的Clifford代数中,四元数最先被发现,最接近我们所熟悉的实数复数体系。

小波分析是近30年来发展起来的新兴学科,作为一种快速高效,高精度的近似方法,它是Fourier分析的一个突破性发展,给许多相关学科的研究领域带来了新的思想,为工程应用提供了一种新的分析工具。关于小波理论,有两个分支:可允许(或连续)小波变换和由多分辨率分析生成的离散小波。关于Clifford值小波,Mitrea [2] 提出了离散Clifford值小波变换,将经典小波推广到了Clifford代数,Brackx和Sommen [3] -[6] 建立了上此类小波的理论。Peng和Zhao [7] 刻画了与超过二维的可伸缩的欧氏群相关的Clifford代数值可允许小波,[8] 研究了与(二维可伸缩的欧氏群)相关的四元数值可允许小波,用 Fourier变换语言给出了可允许条件的准确刻画,并给出了一些可允许小波。Mawardi,Adji和Zhao [9] 用可允许相似群来构造Clifford代数值可允许小波变换,Swanhild Bernstein [10] 以Clifford分析为工具来构造小波。本文研究一种与特殊的Fourier变换相关的四元数值可允许小波变换,Fourier变换中采用的是

(其中是任意给定的单位向量,它定义了变换轴。在处理RGB (红绿蓝)图象时,常选,对应于单位RGB颜色块的照明,灰度,轴。在本文中,为简便起见,也用),

而不是经典意义下的[11] [12] ,所以用此Fourier变换语言所刻画的可允许条件是本文给出的第一个新的结果,也是本文的基础,接着举例给出一个可允许小波,然后给出此类可允许小波变换的一些性质,诸如Plancherel公式,Parseval公式,重构公式,再生核等。

Weyl算子理论是数学分析和物理学都非常感兴趣的一大课题,在偏微分方程理论中,Weyl算子是被作为一类特殊的拟微分算子来研究的,并且证明它在一系列问题中都有很好的应用,诸如:椭圆理论,谱渐近性,正则问题等[13] -[17] 。本文定义了与四元数值可允许小波变换相关的Weyl变换,证明了当时,是有界的。

现在,简单的回顾一下四元数[18] 。作为一类特殊的Clifford代数,上的四元数代数是可结合但不可交换的代数。它的基是:1,,满足

给两个四元数,令

,其中的标量部分,的向量部分,则:

的共轭四元数记为

的范数(也叫模)记为

实部的四元数为纯四元数,有非零实部的四元数为全四元数,单位四元数模为1。

为两个纯四元数,可以进行如下分解:

; (1.1)

[19] 。

同理得到一个全四元数关于一个向量可以分解为:

一般来说,四元数乘法不可交换,但对于平行四元数来说,乘法可以交换。

是一个单位纯四元数,欧拉公式仍然成立:。任意一个四元数都可以表示成极形式:,其中指的是坐标轴,是角度,

如果,角度无定义[18] 。

关于四元数的更多内容,参看[19] [20] 以及其中的参考文献。

定义1.1 [8] :四元数模定义为上的内积和范数定义为:

类似的,可以定义上的内积和范数。

上的内积定义为:

(1.2)

本文所采用Fourier变换定义如下:

定义1.2 [18] :,四元数Fourier变换对定义为:

对于,由计算可得:

(1.3)

本文中出现的速降函数均采用四元数值的,类似经典情况,速降函数定义如下:

对于

其中

:表示无穷次可微的函数全体。这样的称为速降函数空间。

2. 主要结果

本节首先推导得出可允许条件,接着举例给出一个可允许小波,然后给出此类可允许小波变换的一些性质。

下面先刻画可允许条件。

,定义

(2.1)

的Fourier变换是

现在定义上的算子

(2.2)

由直接计算可得:

(2.3)

,为了像经典情况一样得到重构公式,计算

由(2.2),(2.3),(1.2),可得:

假设:

(2.4)

且对几乎处处是常数,

则可得:

因为中稠密,故中成立。

记:

则有:

如果,则重构公式在弱意义下成立:

下面给出满足(2.4)的函数

假设,则由(2.4)可得:

从而得到

所以应有,故得到

由于

且由四元数的性质可知,故可得

从而由(1.1)可得,因此有

因此,可得应为如下形式

总结如下:

定义2.1:令,当,并且:

时,称为可允许小波,

为可允许条件,

称相应的变换为可允许小波变换。

记:

上的范数记作:

下面给出一个可允许小波的例子。

,则:

另一方面,

所以

又由于:

所以综上可知

由上述推理过程可得可允许小波变换的性质。

定理2.2:(Plancherel公式)令,则:

定理2.3:(Parseval公式)令,则:

由Parseval公式可得下面的重构公式:

定理2.4:(Reconstruction公式)令,则:

现在定义,则是带再生核的Hilbert空间。

定理2.5:(再生核)的再生核是:

证明:由重构公式可得:

所以,再生核:。证毕。

定理2.6:令,则,即型。

证明:当时,由Plancherel公式,

时,由Hölder不等式可得

因此

所以由Riesz-Thorin定理可知型,。证毕。

3. 与四元数值可允许小波变换相关的Weyl变换

本节将在上一节的基础上研究与四元数值可允许小波变换相关的Weyl变换。

定义3.1:令,则Weyl算子定义为:

其中

由定义可得

因此:

其中是关于第二个变量的伸缩平移变换,

定理3.2:令,则Weyl算子定义了一个有界映射,并且:

所以对于符号,算子有定义,并且也有

证明:首先证明如果,则

事实上,对于,由定义,Hölder不等式和plancherel公式可得:

所以,

另一方面,由于中稠密,所以可以将算子延拓到上,并且也成立。证毕。

定理3.3:假设,则算子也满足:

因此Weyl算子可以延拓到上,并且

证明:因为,可得:

故对于

所以

因为中稠密,所以可以将算子延拓到上。证毕。

由Riesz-Thorin定理及定理3.2,定理3.3可得下面的定理。

定理3.4:对于,存在唯一的从的算子,使得对所有的,有:

并且

基金项目

国家自然科学基金项目(No. 11471040),中央高校基本科研业务费专项资金(No. 2014kJJCA10)资助。

NOTES

*通讯作者。

参考文献

[1] Hamilton, W.R. (1866) Elements of Quaternions. Longmans, Green, London.
[2] Mitrea, M. (1994) Clifford Wavelets, Singular Integrals and Hardy Spaces. Lectures Notes in Mathematics, 1575.
[3] Brackx, F. and Sommen, F. (2000) Clifford-Hermite Wavelets in Euclidean Space. Journal of Fourier Analysis and Applications, 6, 209-310.
http://dx.doi.org/10.1007/bf02511157
[4] Brackx, F. and Sommen, F. (2001) The Continuous Wavelet Transform in Clifford Analysis. Clifford Analysis and Its Applications, 9-26.
http://dx.doi.org/10.1007/978-94-010-0862-4_2
[5] Brackx, F. and Sommen, F. (2001) The Generalized Clif-ford-Hermite Continuous Wavelet Transform. Advances in Applied Clifford Algebras, 11, 219-231.
http://dx.doi.org/10.1007/BF03042219
[6] Brackx, F. and Sommen, F. (2002) Benchmarking of Three-Dimensional Clifford Wavelet Functions. Complex Variables: Theory and Application, 47, 577-588.
http://dx.doi.org/10.1080/02781070290016269
[7] Zhao, J.M. and Peng, L.Z. (2006) Clifford Algebra-Valued Admissible Wavelets Associated with More than 2-Di- mensional Euclidean Group with Dilations, Wavelets, Multiscale Systems and Hypercomplex Analysis. Operator Theory: Advances and Applications, 167, 183-190.
[8] Zhao, J.M. and Peng, L.Z. (2007) Quaternion-Valued Admissible Wavelets and Orthogonal Decomposition of . Frontiers of Mathematics in China, 2, 491-499.
http://dx.doi.org/10.1007/s11464-007-0030-5
[9] Bahri, M., Adji, S. and Zhao, J.M. (2011) Clifford Algebra-Valued Wavelet Transform on Multivector Fields. Advances in Applied Clifford Algebras, 21, 13-30.
http://dx.doi.org/10.1007/s00006-010-0239-3
[10] Bernstein, S. (2014) Wavelets in Clifford Analysis. Operator Theory, 1-25.
http://dx.doi.org/10.1007/978-3-0348-0692-3_17-1
[11] Bateman, H. (1954) Tables of Integral Transforms. Staff of the Bateman Manuscript Project, 1, 313.
[12] Ding, Y. (2008) The Basis of Modern Analysis. Beijing Normal University Press, Beijing.
[13] Boggiatto, P. and Rodino, L. (2003) Quantization and Pseudo-Differential Operators. Cubo Matemática Educacional, 5, 237-272.
[14] Dachraoui, A. (2001) Weyl-Bessel Transforms. Journal of Computa-tional and Applied Mathematics, 133, 263-276.
http://dx.doi.org/10.1016/S0377-0427(00)00649-X
[15] Peng, L.Z. and Ma, R.Q. (2005) Wavelets Associated with Hankel Transform and Their Weyl Transform. Science in China Series A-Mathematics, 5, 497-503.
[16] Rachdi, L.T. and Trimèche, K. (2003) Weyl Transforms Associated with the Spherical Mean Operator. Analysis and Applications, 2, 141-164.
http://dx.doi.org/10.1142/S0219530503000156
[17] Zhao, J.M. and Peng, L.Z. (2004) Wavelet and Weyl Transforms Associated with the Spherical Mean Operator. Integral Equations and Operator Theory, 50, 279-290.
http://dx.doi.org/10.1007/s00020-003-1222-3
[18] Moxey, C.E., Stephen, J.S. and Todd, A.E. (2003) Hypercomplex Correlation Techniques for Vector Images. IEEE Transactions on Signal Processing, 51, 1941-1953.
http://dx.doi.org/10.1109/TSP.2003.812734
[19] Coxeter, H.S.M. (1946) Quaternions and Reflections. The American Mathematical Monthly, 53, 136-146.
http://dx.doi.org/10.2307/2304897
[20] Gürlebeck, K. and Spröbig, W. (1990) Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser Verlag, Basel.
http://dx.doi.org/10.1007/978-3-0348-7295-9

为你推荐



Baidu
map