无爪图中子图的度和与Hamilton连通性
The Hamilton-Connectivity with the Sum Degree of Subgraph in Claw-Free Graphs
DOI:10.12677/AAM.2014.31002,PDF,被引量下载: 2,958浏览: 6,923科研立项经费支持
作者:米 晶,王江鲁:山东师范大学数学科学学院,济南
关键词:无爪图不相邻子图子图的度Hamilton路Claw-Free Graph; Non-Adjacent Subgraph; Degree of Subgraph; Hamilton-Path
摘要: 本文定义了子图的度的概念,并利用子图的度给出如下结果:设 Gn2-连通无爪图,δ(G)3,如果G中任意两个分别同构于P3K2的不相邻子图H1H2的度和,对于任意的u,vÎG,若{u,v}不构成割集,那么u,v间存在Hamilton路。
Abstract: In this paper , we defined the degree of subgraph, and got the following result on the basis of the degree of subgraph: Let G be a 2-connected claw-free graph of order n , . If H 1 and H 2 , any two non - adjacent subgraphs , are isomorphic to P 3 and K 2 , respectively , and d ( H 1 ) + d ( H 2 ) ≥ n , for each pair of u , v Î G , when { u , v } isn t a cut set, there exis ts a Hamilton-path in u , v .
文章引用:米晶, 王江鲁. 无爪图中子图的度和与Hamilton连通性[J]. 应用数学进展, 2014, 3(1): 8-16. http://dx.doi.org/10.12677/AAM.2014.31002
为你推荐



Baidu
map