多元插值格式的计算机实现
Acquired by Computer on the Schemes of Multivariate Interpolation
摘要:
多元插值是目前计算数学领域的一个热门研究问题,这源于它在多元函数列表、有限元法、工业产品外形设计等实际科研生产中的广泛应用。本文首先介绍了多元插值的基本概念,进而研究了多元插值函数的存在唯一性问题,也就是如何选择结点组才能使多元插值多项式函数惟一存在问题,同时本文给出了多元插值结点组的一些构造方法,如:直线法叠加法、弧线叠加法。本文将这两
种构造方法应用到具体的示例中,最后应用本文给出的构造方法,我们用
MATLAB
软件来分别实现了二元一次、二元二次和二元三次插值,并将它们进行了对比,发现随着插值多项式次数的增加插值效果也越来越好
。
>Multivariate interpolation is one of the hot research problems of computational mathematics, which derives its widespread application in the list, the multiple functions of finite element method, industrial prod-uct design, research and production. This paper first introduces the basic concepts of multivariate interpola-tion, and then studiesthe existence and uniqueness of multivariate interpolation function, that is,how to cho-ose the set of nodes to make the existence and uniqueness of multivariate interpolation polynomial function at the same time;this paper gives some construction methods on set of nodes for multivariate interpolation, such as: linear superposition methodandcurve superposition method. The application of construction method is given in this paper.We use MATLAB software to realize binary linear interpolation,binaryquadricandbi-nary cubic interpolation and find that interpolation effect is also getting better and betteralong with the in-crease in the degree of interpolation polynomial
参考文献
[1] |
王仁宏 (2005) 数值逼近. 高等教育出版社, 北京. |
[2] |
梁学章, 李强 (2005) 多元逼近. 国防工业出版社, 北京. |
[3] |
Kincaid D. and Cheney W. 著, 王国荣, 余耀明, 徐兆亮, 译 (2005) 数值分析. 机械工业出版社, 北京. |
[4] |
崔利宏, 姜志敏 (2008) 关于多元分次插值结点组适定性问题的研究. 延边大学学报(自然科学版), 2, 86-88. |
[5] |
梁学章 (1979) 二元插值的适定结点组与迭加插值法. 吉林大学自然科学学报, 1, 27-32. |
[6] |
张德峰 (2010) MATLAB数值分析第二版. 机械工业出版社, 北京. |
[7] |
张德峰, 著 (2007) MATLAB数值分析与应用. 国防工业出版社, 北京. |