学术期刊
切换导航
首 页
文 章
beplay手机端
投 稿
预 印
会 议
beplay电子竞技项目
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
beplay888备用网址
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
生命科学
微生物前沿
Vol. 2 No. 3 (September 2013)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
细菌DNA损伤诱导反应(SOS 反应)在控制细菌耐药性中的作用
Role of DNA Damage Response (SOS response) on the Control of Bacterial Resistance
DOI:
10.12677/AMB.2013.23016
,
PDF
,
HTML
,
XML
,
被引量
下载: 4,381
浏览: 18,737
国家科技经费支持
作者:
张岩
*
:山东大学微生物技术国家重点实验室,济南、山东水利医院,济南;
盛多红
*
:山东大学微生物技术国家重点实验室,济南
关键词:
细菌
;
SOS反应
;
耐药性
;
RecA
;
Bacterium; SOS Response; Drug Resistance; RecA
摘要:
细菌耐药性是当前最紧迫的公众健康问题之一,尤其在目前新型抗菌药物研发落后于耐药菌进化速度的情况下,细菌耐药性的发生、传播以及消除的机制,已经成为人们关注的热点。近来研究发现,细菌
DNA
损伤诱导反应
(SOS
反应
)
在细菌进化耐药性的过程中扮演着重要角色。在这里,本文对
SOS
反应与细菌耐药性的关系、研究进展以及当前存在问题作一阐述。
Bacterial drug resistance is one of the world’s most pressing public health threats. Especially in today, new antimicrobial drugs are no longer being developed at a rate that can keep pace with microbial evolution.
The mechanism for the emergence, spread and reversion of bacterial resistance
has become a research hotspot.
Recently, it has been proved that bacterial DNA damage response (also named SOS response) acts an important role in the evolution of drug resistance. Here, we reviewed the relation between SOS response and bacterial drug resistance.
文章引用:
张岩, 盛多红. 细菌DNA损伤诱导反应(SOS 反应)在控制细菌耐药性中的作用[J]. 微生物前沿, 2013, 2(3): 83-89.
http://dx.doi.org/10.12677/AMB.2013.23016
参考文献
[
1
]
K. Barakat, M. Gajewski and J. A. Tuszynski. DNA repair inhibitors: The next major step to improve cancer therapy. Current Topics in Medicinal Chemistry, 2012, 12(12): 1376- 1390.
[
2
]
M. O. Sommer, G. Dantas. Antibiotics and the resistant micro- biome. Current Opinion in Microbiology, 2011, 14(5): 556-563.
[
3
]
P. C. Appelbaum. 2012 and beyond: Potential for the start of a second pre-antibiotic era? Journal of Antimicrobial Chemothera- py, 2012, 67(9): 2062-2068.
[
4
]
R. Nowak. Hungary sees an improvement in penicillin resistance. Science, 1994, 264: 364.
[
5
]
D. N. Gerding, T. A. Larson, R. A. Hughes, M. Weiler, C. Shan- holtzer and L. R. Peterson. Aminoglycoside resistance and ami- noglycoside usage: Ten years of experience in one hospital. Antimicrobial Agents and Chemotherapy, 1991, 35: 1284-1290.
[
6
]
N. Han, D. Sheng and H. Xu. Role of Escherichia coli strain subgroups, integrons, and integron-associated gene cassettes in dissemination of antimicrobial resistance in aquatic environ- ments of Jinan, China. Water Science and Technology, 2012, 66 (11): 2385-2392.
[
7
]
K. Hegstad, S. Langsrud, B. T. Lunestad, A. Scheie, M. Sunde and S. P. Yazdankhah. Does the wide use of quaternary ammo- nium compounds enhance the selection and spread of antimic- robial resistance and thus threaten our health? Microbial Drug Resistance, 2010, 16(2): 91-104.
[
8
]
L. Ma, X. Zhang, S. Cheng, Z. Zhang, .P Shi, B. Liu, B. Wu and Y. Zhang. Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant. Ecotoxico- logy, 2011, 20(5): 968-973.
[
9
]
M. A. Kohanski, D. J. Dwyer and J. J. Collins. How antibiotics kill bacteria: From targets to networks. Nature Reviews Micro- biology, 2010, 8(6): 423-435.
[
10
]
M. A. Kohanski, D. J. Dwyer and B. Hayete. A common mecha- nism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5): 797-810.
[
11
]
P. Belenky, J. J. Collins. Antioxidant strategies to tolerate anti- biotics. Science, 2011, 334(6058): 915-916.
[
12
]
Z. Baharoglu, D. Mazel. Vibrio cholerae triggers SOS and muta- genesis in response to a wide range of antibiotics: A route to- wards multiresistance. Antimicrobial Agents and Chemotherapy, 2011, 55(5): 2438-2441.
[
13
]
V. Sharma, Y. Sakai, K. A. Smythe and Y. Yokobayashi. Knock- down of recA gene expression by artificial small RNAs in Es- cherichia coli. Biochemical and Biophysical Research Com- munications, 2013, 430(1): 256-259.
[
14
]
I. Erill, S. Campoy and J. Barbé. Aeons of distress: An evo- lutionary perspective on the bacterial SOS response. FEMS Microbiology Reviews, 2007, 31(6): 637-656.
[
15
]
C. Miller, L. E. Thomsen, C. Gaggero, R. Mosseri, H. Ingmer and S. N. Cohen. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science, 2004, 305: 1629-1631.
[
16
]
A. Balandina, L. Claret, R. Hengge-Aronis and J. Rouviere- Yaniv. The Escherichia coli histone-like protein HU regulates rpoS translation. Molecular Microbiology, 2011, 39: 1069-1079.
[
17
]
O. Preobrajenskaya, A. Boullard, F. Boubrik, M. Schnarr and J. Rouviere-Yaniv. The protein HU can displace the LexA repress- sor from its DNA-binding sites. Molecular Microbiology, 1994, 13: 459-467.
[
18
]
B. R. Levin. Microbiology. Noninherited resistance to antibiotics. Science, 2004, 305(5690): 1578-1579.
[
19
]
T. Dorr, K. Lewis and M. Vulić. SOS response induces persis- tence to fluoroquinolones in Escherichia coli. PLoS Genetics, 2009, 5(12): Article ID: e1000760.
[
20
]
V. M. D’Costa, C. E. King and L. Kalan. Antibiotic resistance is ancient. Nature, 2011, 477(7365): 457-461.
[
21
]
A, Giedraitiene, A.Vitkauskiene and R. Naginiene. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas), 2011, 47(3): 137-146.
[
22
]
A. Jolivet-Gougeon, B. Kovacs and S. Le Gall-David. Bacterial hypermutation: Clinical implications. Journal of Medical Micro- biology, 2011, 60(Pt 5): 563-573.
[
23
]
T. D. Tran, H. Y. Kwon and E. H. Kim. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2011, 55(6): 2714-2728.
[
24
]
J. Aranda. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. Journal of Bacteriology, 2011, 193(15): 3740- 3747.
[
25
]
T. J. Wigle, S. F. Singleton. Directed molecular screening for RecA ATPase inhibitors. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 3249-3253.
[
26
]
J. A. Imlay, S. Linn. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. Journal of Bacteri- ology, 1987, 169: 2967-2976.
[
27
]
T. Mori, T. Nakamura, N. Okazaki, A. Furukohri, H. Maki and M. T. Akiyama. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response. Genes and Genetic Systems, 2012, 87(2): 75-87.
[
28
]
E. Lopez, J. Blazquez. Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2009, 53(8): 3411-3415.
[
29
]
R. Singh, K. R. Ledesma, K. Chang and V. H. Tam. Impact of recA on levofloxacin exposure-related resistance development. Antimicrobial Agents and Chemotherapy, 2010, 54(10): 4262- 4268.
[
30
]
J. Hare, J. Bradley and C. Lin. Diverse DNA damage responses in Acinetobacter include the capacity for DNA damage-induced mutagenesis in the opportunistic pathogens Acinetobacter bau- mannii and Acinetobacter ursingii. Microbiology, 2011, 158(Pt 3): 601-611.
[
31
]
R. Jayaraman. Antibiotic resistance: An overview of mecha- nisms and a paradigm shift. Current Science, 2009, 96(11): 1475-1484.
[
32
]
B. Hall, M. Barlow. Evolution of the serine β-lactamases: Past, present and future. Drug Resistance Updates, 2004, 7: 111-123.
投稿
为你推荐
友情链接
科研出版社
开放图书馆
map