微波助离子液体中S掺杂TiO2催化剂的制备及其微波强化光催化活性
Microwave Assisted Preparation of S-Doped Nano-TiO 2 Photo-Catalysts in Ionic Liquids and Its Microwave Enhanced Photo-Catalytic Activity
摘要: 在离子液体介质中,采用溶胶–凝胶法,以钛酸正丁酯为前驱物,合成S掺杂纳米TiO 2光催化剂TiO 2-S。采用IR、XRD对催化剂的结构进行了表征,以甲基橙为模拟污染物,在微波超声波组合催化合成仪中,在恒温(25℃)下,分别利用微波辐射(MW)、紫外光照(UV)及微波辐射 + 紫外光照(MW/UV)三种降解条件,考察了煅烧温度、煅烧时间、微波干燥功率、微波干燥时间、离子液体用量和S掺杂量对其光催化活性的影响。试验表明,煅烧温度为600℃、煅烧时间为2 h、微波干燥功率为210 W、微波干燥时间为25 min、离子液体加入量为5.6 mL和S掺杂量为n(S)/n(Ti) = 2时,TiO 2-S的催化活性最高,且在MW、UV和MW/UV三种降解条件下,TiO 2-S对甲基橙的降解率分别为7.26%,75.49%,82.12%,这表明微波与紫外光照有很好的协同作用,微波–紫外光照具有强化S掺杂纳米TiO 2降解甲基橙的效果。
Abstract: Using Ti(OBu)4 as the precusor S-doped nano-TiO 2 photo-catalysts were prepared by the sol-gel method in ionic liquids. The IR and XRD were used to characterize the structure of the catalysts. At a constant temperature (25°C), using respectively the three degradation conditions of MW, UV and MW/UV, the effects of the calcinations temperature, the calcinations time, the power of microwave drying, microwave drying time, the amount of ionic liquid and the S doping amount on the photocatalytic activity of nanoparticle TiO 2 for degradation of methyl orange were investigated in the combination of catalytic synthesis of microwave ultrasonic instrument. The tests indicated that the highest catalytic activity of nanoparticle TiO 2 under the following condition: calcination temperature of 600°C, calcination time of 2 h, microwave drying power of 210 W, microwave drying time of 25 min, ionic liquid added in an amount of 5.6 mL and S doped amount of n(S)/n(Ti) = 2. The degradation rate of methyl orange under three conditions of MW, UV and MW/UV were 7.26%, 75.49% and 82.12% respectively. This reveals that MW has a very good synergy with UV, and microwave has the effect of strengthening S-doped nano-TiO 2 degradation of methyl orange.
文章引用:蒋文建, 孙婧, 毕先钧. 微波助离子液体中S掺杂TiO 2催化剂的制备及其微波强化光催化活性[J]. 化学工程与技术, 2013, 3(4): 114-121. http://dx.doi.org/10.12677/HJCET.2013.34021

参考文献

[1] 刘守新, 刘鸿. 光催化及光电催化基础与应用[M]. 北京: 化学工业出版社, 2006, 51-315.
[2] 祝童. 金属–非金属共掺杂纳米TiO2-的制备及其光催化性能研究[D]. 合肥工业大学, 2007: 7-12.
[3] 周武艺, 曹庆云, 唐绍裘等. 硫掺杂纳米TiO2的掺杂机理及可见光催化活性的研究[J]. 无机材料学报, 2006, 21(4): 776- 782.
[4] 金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999, 1-153.
[5] 王嘉. 难降解有机污染物的微波辅助紫外光催化氧化的研究[D]. 华中科技大学, 2006: 13-20.
[6] K. Yoo, H. Choi and D. Dionysion. Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications, 2004, 17: 2000-2001.
[7] 杨艳琼, 王昭, 毕先钧. 微波助离子液体中纳米TiO2/PMMA复合材料的制备及光催化性能[J]. 分子催化, 2008, 22(4): 362- 367.
[8] 李丽, 王昭, 毕先钧. 离子液体中微波辅助制备硫掺杂纳米TiO2光催化剂[J]. 工业催化, 2008, 16(6): 65-68.
[9] 吕敏春, 严莲荷, 王剑虹等. 光、微波、热催化氧化效果的比较[J]. 工业水处理, 2003, 23(8): 36-38.
[10] 张西旺, 王怡中. 微波强化光催化氧化技术研究现状及展望[J]. 化学进展, 2005, 17(1): 92-95.
[11] 李旦振, 郑宜, 付贤智. 微波场助光催化氧化及其应用[J]. 高等学校化学学报, 2002, 23(1): 2351-2356.
[12] S. Horikoshi, H. Hidaka and N. Serpone. Environ-mental reme- diation by an integrated microwave/UV illumination technique. 1. Microwave-assisted degradation of rhodamine-B dye in aque- ous TiO2 dispersions. Environmental Science & Technology, 2002, 36(6): 1357-1366.

Baidu
map