阳极氧化法制备医用钛纳米结构表面的工艺研究
Study on Technique of Nanostructured Surface of Medical Titanium Prepared by Anodic Oxidation
摘要:
采用正交试验法设计出一种阳极氧化技术制备纳米结构医用钛表面的工艺,研究了不同电解液浓度,阳极氧化电压和氧化时间对医用钛表面润湿性能和耐腐蚀性能的影响,得到综合性能最佳的纳米结构医用钛表面。实验采用纯水接触角测试说明纳米结构表面的亲疏水性能,通过测定
塔菲尔
曲线来表征纳米结构表面的耐腐蚀性能和利用扫描电子显微镜观察纳米结构表面的微观形貌。结果表明:电解液组成为
1.0%
的
HF
溶液,阳极氧化电压为
20 V
和工作时间为
60
分钟,为最优的工艺参数。此条件下处理得到的医用钛表面具有较小的接触角和较大的腐蚀电位,说明其良好的亲水性能和抗腐蚀性能。扫描电子显微镜结果表明医用钛材料经优化的阳极氧化工艺处理后其表面呈现为规则的纳米管阵列,且材料表征显示处理的医用钛表面为非晶氧化钛薄膜,厚度约为
380 nm
。
Abstract:
An anodic oxidation approach for preparation of nanostructured titanium surface was developed by orthogonal design. The effects of the concentration of electrolyte, the working voltage and the duration for anodic oxidation on the hydrophobic property and the corrosion resistance of biomedical titanium surface have been systematically studied, and the biomedical titanium surface with the high quality has been achieved. In the study, the contact angle of pure water was utilized to demonstrate the hydrophobic property, the Tafel curve was used to characterize the corrosion resistance, and scan electronic microscope was performed to observe the surface morphology. It was found that the electrolyte composition of HF 1.0% solution, the anodic oxidation voltage set at 20 V and the anodic oxidation duration of 60 minutes were the optimal parameters for the anodic oxidation process. Using the optimal parameters, the obtained titanium surface possessed smaller contact angle and higher corrosion potential, indicating its good hydrophilic property and corrosion resistance. Scanning electron microscope results shown that ordered nanotube arrays were present on biomedical titanium material treated by the optimal anode oxidation process and the materials characterization revealed that the as-prepared surface was amorphous TiO
2
film with thickness about 380 nm.
参考文献
[1] |
刘宣勇编著. 生物医用钛材料及其表面改性[M]. 北京: 化学工业出版社, 2009. |
[2] |
Z. P. Yang, S. H. Si, X. M. Zeng, et al. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Acta Biomaterialia, 2008, 4(3): 560- 568. |
[3] |
G. Mendonca, D. B. S. Mendonca, F. J. L. Aragao, et al. Advancing dental implant surface technology from micron- to nano-topography. Biomaterials, 2008, 29(28): 3822-3835. |
[4] |
X. B. Zhao, X. Y. Liu, C. X. Ding and P. K. Chu. Effect of plasma treatment on bioactivity of TiO2 coatings. Surface and Coatings Technology, 2007, 201(15): 6878-6881. |
[5] |
H. W. Kim, Y. H. Koh, L. H. Li, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials, 2004, 25(13): 2533-2538. |
[6] |
Y. Han, S. H. Hong and K. W. Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 2003, 168: 249-258. |
[7] |
S. N. Nayab, F. H. Jones and I, Olsen. Effects of calciu ion-im- plantation of titanium on bone cell function in vitro. Jounal of Biomedical Materials Research Part A, 2007, 83A: 296-302. |
[8] |
P. Schmuki, P. Roy and S. Berger. TiO2 nanotube arrays: Synthesis and applications. Angewandte Chemie-International Edition, 2011, 50(13): 2904-2939. |
[9] |
O. K. Varghese, D. W. Gong, M. Paulose, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. Journal of Materials Research, 2003, 18(1): 156- 165. |
[10] |
S. Oh, K. S. Brammer, Y. S. J. Li, et al. Stem cell fate dictated solely by altered nanotube dimension. Proceeding of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130-2135. |
[11] |
杨虎, 钟波, 刘琼荪编著. 应用数理统计[M]. 北京: 清华大学出版社, 2011. |
[12] |
E. Balaur, J. M. Macak, L. Taveira and P. Schmuki. Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications, 2005, 7(10): 1066-1070. |