[1] |
Parola, M. and Pinzani, M. (2019) Liver Fibrosis: Pathophysiology, Pathogenetic Targets and Clinical Issues. Molecular Aspects of Medicine, 65, 37-55. https://doi.org/10.1016/j.mam.2018.09.002 |
[2] |
Zheng, Y., Sun, W., Wang, Z., Liu, J., Shan, C., He, C., et al. (2022) Activation of Pancreatic Acinar FXR Protects against Pancreatitis via Osgin1-Mediated Restoration of Efficient Autophagy. Research, 2022, Article ID: 9784081. https://doi.org/10.34133/2022/9784081 |
[3] |
Lamas Bervejillo, M. and Ferreira, A.M. (2019) Understanding Peroxisome Proliferator-Activated Receptors: From the Structure to the Regulatory Actions on Metabolism. In: Trostchansky, A. and Rubbo, H., Eds., Advances in Experimental Medicine and Biology, Springer International Publishing, 39-57. https://doi.org/10.1007/978-3-030-11488-6_3 |
[4] |
Linghu, L., Zong, W., Liao, Y., Chen, Q., Meng, F., Wang, G., et al. (2023) Herpetrione, a New Type of PPARα Ligand as a Therapeutic Strategy against Nonalcoholic Steatohepatitis. Research, 6, Article ID: 0276. https://doi.org/10.34133/research.0276 |
[5] |
Kisseleva, T. and Brenner, D. (2020) Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nature Reviews Gastroenterology & Hepatology, 18, 151-166. https://doi.org/10.1038/s41575-020-00372-7 |
[6] |
Fritzen, A.M., Lundsgaard, A. and Kiens, B. (2020) Tuning Fatty Acid Oxidation in Skeletal Muscle with Dietary Fat and Exercise. Nature Reviews Endocrinology, 16, 683-696. https://doi.org/10.1038/s41574-020-0405-1 |
[7] |
Tahri-Joutey, M., Andreoletti, P., Surapureddi, S., Nasser, B., Cherkaoui-Malki, M. and Latruffe, N. (2021) Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPAR. International Journal of Molecular Sciences, 22, Article 8969. https://doi.org/10.3390/ijms22168969 |
[8] |
Reddy, J.K. (2004) Peroxisome Proliferators and Peroxisome Proliferator-Activated Receptor α. The American Journal of Pathology, 164, 2305-2321. https://doi.org/10.1016/s0002-9440(10)63787-x |
[9] |
Zhang, X., Gao, T., Deng, S., Shang, L., Chen, X., Chen, K., et al. (2021) Fasting Induces Hepatic Lipid Accumulation by Stimulating Peroxisomal Dicarboxylic Acid Oxidation. Journal of Biological Chemistry, 296, Article 100622. https://doi.org/10.1016/j.jbc.2021.100622 |
[10] |
Ranea-Robles, P. and Houten, S.M. (2023) The Biochemistry and Physiology of Long-Chain Dicarboxylic Acid Metabolism. Biochemical Journal, 480, 607-627. https://doi.org/10.1042/bcj20230041 |
[11] |
Christofides, A., Konstantinidou, E., Jani, C. and Boussiotis, V.A. (2021) The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolism, 114, Article 154338. https://doi.org/10.1016/j.metabol.2020.154338 |
[12] |
Devchand, P.R., Keller, H., Peters, J.M., Vazquez, M., Gonzalez, F.J. and Wahli, W. (1996) The PPARα-Leukotriene B4 Pathway to Inflammation Control. Nature, 384, 39-43. https://doi.org/10.1038/384039a0 |
[13] |
Gallucci, G.M., Alsuwayt, B., Auclair, A.M., Boyer, J.L., Assis, D.N. and Ghonem, N.S. (2022) Fenofibrate Downregulates NF-κB Signaling to Inhibit Pro-Inflammatory Cytokine Secretion in Human THP-1 Macrophages and during Primary Biliary Cholangitis. Inflammation, 45, 2570-2581. https://doi.org/10.1007/s10753-022-01713-1 |
[14] |
Crisafulli, C. and Cuzzocrea, S. (2009) The Role of Endogenous and Exogenous Ligands for the Peroxisome Proliferator-Activated Receptor Alpha (PPAR-Α) in the Regulation of Inflammation in Macrophages. Shock, 32, 62-73. https://doi.org/10.1097/shk.0b013e31818bbad6 |
[15] |
Kleemann, R., Gervois, P.P., Verschuren, L., Staels, B., Princen, H.M.G. and Kooistra, T. (2003) Fibrates Down-Regulate Il-1-Stimulated C-Reactive Protein Gene Expression in Hepatocytes by Reducing Nuclear P50-NFκB-C/EBP-β Complex Formation. Blood, 101, 545-551. https://doi.org/10.1182/blood-2002-06-1762 |
[16] |
Hill, M.R., Clarke, S., Rodgers, K., Thornhill, B., Peters, J.M., Gonzalez, F.J., et al. (1999) Effect of Peroxisome Proliferator-Activated Receptor Alpha Activators on Tumor Necrosis Factor Expression in Mice during Endotoxemia. Infection and Immunity, 67, 3488-3493. https://doi.org/10.1128/iai.67.7.3488-3493.1999 |
[17] |
Wigg, A.J. (2001) The Role of Small Intestinal Bacterial Overgrowth, Intestinal Permeability, Endotoxaemia, and Tumour Necrosis Factor Alpha in the Pathogenesis of Non-Alcoholic Steatohepatitis. Gut, 48, 206-211. https://doi.org/10.1136/gut.48.2.206 |
[18] |
Wagner, N. and Wagner, K. (2020) The Role of PPARs in Disease. Cells, 9, Article 2367. https://doi.org/10.3390/cells9112367 |
[19] |
Tailleux, A., Wouters, K. and Staels, B. (2012) Roles of PPARs in NAFLD: Potential Therapeutic Targets. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 809-818. https://doi.org/10.1016/j.bbalip.2011.10.016 |
[20] |
Flowers, M.T. and Ntambi, J.M. (2008) Role of Stearoyl-Coenzyme a Desaturase in Regulating Lipid Metabolism. Current Opinion in Lipidology, 19, 248-256. https://doi.org/10.1097/mol.0b013e3282f9b54d |
[21] |
Zarei, M., Barroso, E., Palomer, X., Dai, J., Rada, P., Quesada-López, T., et al. (2018) Hepatic Regulation of VLDL Receptor by PPARβ/δ and FGF21 Modulates Non-Alcoholic Fatty Liver Disease. Molecular Metabolism, 8, 117-131. https://doi.org/10.1016/j.molmet.2017.12.008 |
[22] |
Wang, Y., Nakajima, T., Gonzalez, F.J. and Tanaka, N. (2020) PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. International Journal of Molecular Sciences, 21, Article 2061. https://doi.org/10.3390/ijms21062061 |
[23] |
Sanderson, L.M., Boekschoten, M.V., Desvergne, B., Müller, M. and Kersten, S. (2010) Transcriptional Profiling Reveals Divergent Roles of PPARα and PPARβ/δ in Regulation of Gene Expression in Mouse Liver. Physiological Genomics, 41, 42-52. https://doi.org/10.1152/physiolgenomics.00127.2009 |
[24] |
Vázquez-Carrera, M. and Wahli, W. (2024) Ppars as Key Transcription Regulators at the Crossroads of Metabolism and Inflammation. International Journal of Molecular Sciences, 25, Article 4467. https://doi.org/10.3390/ijms25084467 |
[25] |
Qiu, Y., Zhang, J., Zeng, F. and Zhu, Y.Z. (2023) Roles of the Peroxisome Proliferator-Activated Receptors (PPARs) in the Pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Pharmacological Research, 192, Article 106786. https://doi.org/10.1016/j.phrs.2023.106786 |
[26] |
Jackson, S.M., Parhami, F., Xi, X., Berliner, J.A., Hsueh, W.A., Law, R.E., et al. (1999) Peroxisome Proliferator—Activated Receptor Activators Target Human Endothelial Cells to Inhibit Leukocyte-Endothelial Cell Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2094-2104. https://doi.org/10.1161/01.atv.19.9.2094 |
[27] |
Yoo, J., Jeong, I., Ahn, K.J., Chung, H.Y. and Hwang, Y. (2021) Fenofibrate, a PPARα Agonist, Reduces Hepatic Fat Accumulation through the Upregulation of TFEB-Mediated Lipophagy. Metabolism, 120, Article 154798. https://doi.org/10.1016/j.metabol.2021.154798 |
[28] |
Lawitz, E.J., Bhandari, B.R., Ruane, P.J., Kohli, A., Harting, E., Ding, D., et al. (2023) Fenofibrate Mitigates Hypertriglyceridemia in Nonalcoholic Steatohepatitis Patients Treated with Cilofexor/Firsocostat. Clinical Gastroenterology and Hepatology, 21, 143-152.E3. https://doi.org/10.1016/j.cgh.2021.12.044 |
[29] |
Mahmoudi, A., Jamialahmadi, T., Johnston, T.P. and Sahebkar, A. (2022) Impact of Fenofibrate on NAFLD/NASH: A Genetic Perspective. Drug Discovery Today, 27, 2363-2372. https://doi.org/10.1016/j.drudis.2022.05.007 |
[30] |
Ginsberg, H.N., Hounslow, N.J., Senko, Y., Suganami, H., Bogdanski, P., Ceska, R., et al. (2022) Efficacy and Safety of K-877 (Pemafibrate), a Selective PPARα Modulator, in European Patients on Statin Therapy. Diabetes Care, 45, 898-908. https://doi.org/10.2337/dc21-1288 |
[31] |
Nakajima, A., Eguchi, Y., Yoneda, M., Imajo, K., Tamaki, N., Suganami, H., et al. (2021) Randomised Clinical Trial: Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated Receptor Α Modulator (SPPARMα), versus Placebo in Patients with Non-Alcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 54, 1263-1277. https://doi.org/10.1111/apt.16596 |
[32] |
Yamashita, S., Masuda, D. and Matsuzawa, Y. (2020) Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Current Atherosclerosis Reports, 22, Article No. 5. https://doi.org/10.1007/s11883-020-0823-5 |
[33] |
de Vries, E., Bolier, R., Goet, J., Parés, A., Verbeek, J., de Vree, M., et al. (2021) Fibrates for Itch (FITCH) in Fibrosing Cholangiopathies: A Double-Blind, Randomized, Placebo-Controlled Trial. Gastroenterology, 160, 734-743.e6. https://doi.org/10.1053/j.gastro.2020.10.001 |
[34] |
Rudic, J.S., Poropat, G., Krstic, M.N., Bjelakovic, G. and Gluud, C. (2012) Bezafibrate for Primary Biliary Cirrhosis. Cochrane Database of Systematic Reviews, 2012, CD009145. https://doi.org/10.1002/14651858.cd009145.pub2 |
[35] |
Sanyal, A., Charles, E.D., Neuschwander-Tetri, B.A., Loomba, R., Harrison, S.A., Abdelmalek, M.F., et al. (2018) Pegbelfermin (BMS-986036), a PEGylated Fibroblast Growth Factor 21 Analogue, in Patients with Non-Alcoholic Steatohepatitis: A Randomised, Double-Blind, Placebo-Controlled, Phase 2a Trial. The Lancet, 392, 2705-2717. https://doi.org/10.1016/s0140-6736(18)31785-9 |
[36] |
Harrison, S.A., Ruane, P.J., Freilich, B.L., Neff, G., Patil, R., Behling, C.A., et al. (2021) Efruxifermin in Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo-Controlled, Phase 2a Trial. Nature Medicine, 27, 1262-1271. https://doi.org/10.1038/s41591-021-01425-3 |
[37] |
Haczeyni, F., Wang, H., Barn, V., Mridha, A.R., Yeh, M.M., Haigh, W.G., et al. (2017) The Selective Peroxisome Proliferator-Activated Receptor-Delta Agonist Seladelpar Reverses Nonalcoholic Steatohepatitis Pathology by Abrogating Lipotoxicity in Diabetic Obese Mice. Hepatology Communications, 1, 663-674. https://doi.org/10.1002/hep4.1072 |
[38] |
Dhingra, S., Mahadik, J.D., Tarabishy, Y., May, S.B. and Vierling, J.M. (2022) Prevalence and Clinical Significance of Portal Inflammation, Portal Plasma Cells, Interface Hepatitis and Biliary Injury in Liver Biopsies from Patients with Non-Alcoholic Steatohepatitis. Pathology, 54, 686-693. https://doi.org/10.1016/j.pathol.2022.01.009 |
[39] |
Aithal, G.P., Thomas, J.A., Kaye, P.V., Lawson, A., Ryder, S.D., Spendlove, I., et al. (2008) Randomized, Placebo-Controlled Trial of Pioglitazone in Nondiabetic Subjects with Nonalcoholic Steatohepatitis. Gastroenterology, 135, 1176-1184. https://doi.org/10.1053/j.gastro.2008.06.047 |
[40] |
Gupte, A.A., Liu, J.Z., Ren, Y., Minze, L.J., Wiles, J.R., Collins, A.R., et al. (2010) Rosiglitazone Attenuates Age-and Diet-Associated Nonalcoholic Steatohepatitis in Male Low-Density Lipoprotein Receptor Knockout Mice. Hepatology, 52, 2001-2011. https://doi.org/10.1002/hep.23941 |
[41] |
Wei, Z., Zhao, D., Zhang, Y., Chen, Y., Zhang, S., Li, Q., et al. (2019) Rosiglitazone Ameliorates Bile Duct Ligation-Induced Liver Fibrosis by Down-Regulating NF-κB-TNF-α Signaling Pathway in a PPARγ-Dependent Manner. Biochemical and Biophysical Research Communications, 519, 854-860. https://doi.org/10.1016/j.bbrc.2019.09.084 |
[42] |
Ratziu, V., Giral, P., Jacqueminet, S., Charlotte, F., Hartemann-Heurtier, A., Serfaty, L., et al. (2008) Rosiglitazone for Nonalcoholic Steatohepatitis: One-Year Results of the Randomized Placebo-Controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology, 135, 100-110. https://doi.org/10.1053/j.gastro.2008.03.078 |
[43] |
Marra, F., Efsen, E., Romanelli, R.G., Caligiuri, A., Pastacaldi, S., Batignani, G., et al. (2000) Ligands of Peroxisome Proliferator-Activated Receptor Γ Modulate Profibrogenic and Proinflammatory Actions in Hepatic Stellate Cells. Gastroenterology, 119, 466-478. https://doi.org/10.1053/gast.2000.9365 |
[44] |
Francque, S.M., Bedossa, P., Ratziu, V., Anstee, Q.M., Bugianesi, E., Sanyal, A.J., et al. (2021) A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH. New England Journal of Medicine, 385, 1547-1558. https://doi.org/10.1056/nejmoa2036205 |
[45] |
Kumar, D.P., Caffrey, R., Marioneaux, J., Santhekadur, P.K., Bhat, M., Alonso, C., et al. (2020) The PPAR α/γ Agonist Saroglitazar Improves Insulin Resistance and Steatohepatitis in a Diet Induced Animal Model of Nonalcoholic Fatty Liver Disease. Scientific Reports, 10, Article No. 9330. https://doi.org/10.1038/s41598-020-66458-z |
[46] |
Wu, D., Eeda, V., Undi, R.B., Mann, S., Stout, M., Lim, H., et al. (2021) A Novel Peroxisome Proliferator-Activated Receptor Gamma Ligand Improves Insulin Sensitivity and Promotes Browning of White Adipose Tissue in Obese Mice. Molecular Metabolism, 54, Article 101363. https://doi.org/10.1016/j.molmet.2021.101363 |
[47] |
Harrison, S.A., Alkhouri, N., Davison, B.A., Sanyal, A., Edwards, C., Colca, J.R., et al. (2020) Insulin Sensitizer MSDC-0602K in Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo-Controlled Phase IIb Study. Journal of Hepatology, 72, 613-626. https://doi.org/10.1016/j.jhep.2019.10.023 |
[48] |
Davison, B.A., Harrison, S.A., Cotter, G., Alkhouri, N., Sanyal, A., Edwards, C., et al. (2020) Suboptimal Reliability of Liver Biopsy Evaluation Has Implications for Randomized Clinical Trials. Journal of Hepatology, 73, 1322-1332. https://doi.org/10.1016/j.jhep.2020.06.025 |
[49] |
Boyer-Diaz, Z., Aristu-Zabalza, P., Andrés-Rozas, M., Robert, C., Ortega-Ribera, M., Fernández-Iglesias, A., et al. (2021) Pan-PPAR Agonist Lanifibranor Improves Portal Hypertension and Hepatic Fibrosis in Experimental Advanced Chronic Liver Disease. Journal of Hepatology, 74, 1188-1199. https://doi.org/10.1016/j.jhep.2020.11.045 |