循环肿瘤DNA在肝癌中的临床应用价值及展望
Clinical Utility and Future Perspectives of Circulating Tumor DNA in Hepatocellular Carcinoma
DOI: 10.12677/acm.2025.1541069, PDF, HTML, XML,   
作者: 徐 颖, 张芷艳:重庆医科大学研究生院,重庆;杨 慷*:重庆医科大学附属第二医院肝胆外科,重庆
关键词: 肝细胞癌生物标志物液体活检循环肿瘤DNAHepatocellular Carcinoma Biomarker Liquid Biopsy Circulating Tumor DNA
摘要: 肝细胞癌(Hepatocellular carcinoma, HCC)作为最常见的原发性肝癌,也是世界范围内最常见的癌症相关死亡的原因之一。由于HCC潜伏期较长、诊断阶段较晚及对全身治疗不敏感,到目前为止,肝脏活检和手术切除仍是临床决策的金标准。传统活检可提供肿瘤生物学信息,但其侵入性高,样本量少,无法代表肿瘤异质性或监测动态肿瘤进展,因此迫切需要微创或无创的新诊断策略以便早期诊断HCC并监测肿瘤进展。近年来,“液体活检(Liquid biopsy)”的概念引起了广泛关注,其无创、可重复分析的特性可实时监测肿瘤复发、转移或治疗反应。随着高灵敏度液体活检技术的发展,HCC循环肿瘤细胞(circulating tumor cells, CTCs)、循环肿瘤DNA (circulating tumor DNA, ctDNA)以及肿瘤来源的外泌体等检测和分析的发展前景可观。本综述重点介绍ctDNA检测及其作为HCC诊断、预后和监测的无创生物标志物的临床应用及展望。
Abstract: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and one of the leading causes of cancer-related deaths worldwide. Due to its long latency period, late-stage diagnosis, and insensitivity to systemic therapies, conventional tissue biopsy and surgical resection remain the gold standards for clinical decision-making to date. Although traditional biopsy can provide tumor biology, it is imperative to find non-invasive diagnostic strategy for early detection and monitoring of HCC due to its invasive nature, limited sample size, and inability to represent tumor heterogeneity or monitor dynamic tumor progression. In recent years, a new concept of “liquid biopsy” has emerged with significant attention due to its non-invasive and repeatable analysis capabilities, enabling real-time monitoring of tumor recurrence, metastasis, or treatment response. With advancements in high-sensitivity liquid biopsy technologies, the detection and analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-derived exosomes in HCC have shown promising prospects. The ctDNA detection and its clinical applications and future potential as a non-invasive biomarker for the diagnosis, prognosis, and monitoring of HCC are highlighted in this review.
文章引用:徐颖, 张芷艳, 杨慷. 循环肿瘤DNA在肝癌中的临床应用价值及展望[J]. 临床医学进展, 2025, 15(4): 1377-1385. https://doi.org/10.12677/acm.2025.1541069

1. 引言

在世界范围内,肝细胞癌(Hepatocellular carcinoma, HCC)是癌症相关死亡的最常见原因之一(每年约80万例),也是肝硬化患者最常见的死亡原因[1],据统计,HCC作为世界上第六大最常见的癌症,在癌症死亡率中排名第三,HCC在男性中比在女性中更为常见[2]。HCC的危险因素包括乙型肝炎病毒(HBV)、丙型肝炎病毒(HCV)感染、酗酒、黄曲霉中毒和非酒精性脂肪性肝病等[3]。近年来,HCC发病率有所增加,这一趋势在撒哈拉以南的非洲、东亚和东南亚尤为明显,主要是由于HBV的患病率增高[4]。尽管现代医疗发展迅速,现有的治疗方法包括手术切除、局部消融、肝移植、综合治疗等,但HCC患者的总生存率并没有显著提高。HCC对放化疗相对不敏感,手术干预仍然是HCC唯一现实的治疗选择。现有的监测方法都是基于对HCC高风险患者(通常是晚期纤维化或肝硬化阶段的慢性肝病患者)进行血清甲胎蛋白(AFP)和肝脏超声的早期筛查从而实现早期诊断[5]-[7]。然而,肝细胞癌监测的概念和实际临床应用方式一直存在争议,根据现有研究证明,AFP的灵敏度为25%至65%,肝脏超声的灵敏度为60%,对于非肝硬化患者<1 cm的结节缺乏影像学特征[8]。有学者认为,在没有任何明确的对照试验显示AFP对早期诊断HCC有益的情况下,不应在常规超声检查中添加AFP检测进行HCC监测[9]。此外,虽然AFP长期以来被用作HCC筛查和监测,但它并不是HCC的敏感或特异性诊断标志物,在肝硬化和肝脏炎症等非HCC慢性肝病,血清AFP水平也会升高[10] [11]。最新的美国肝病研究协会(AASLD)指南不再推荐血清AFP检测作为HCC诊断评估的一部分,而更推荐使用肝结节直径、计算机断层扫描(CT)、磁共振成像(MRI)或组织活检综合评估[12]

分期不同HCC患者预后差异较大,但是由于检测手段的局限性和公众对卫生保健知识的缺乏,大多数患者在首次诊断HCC时已进展到晚期,只有大约20%~30%的患者符合手术条件。此外,尽管早期HCC (BCLC A期)的5年生存率很高(50%~75%),但由于根治性手术切除或消融后的复发率为50%~70%,HCC的预后仍然有限[5] [13]。因此,寻找一种可靠的方法来检测早期HCC并监测肿瘤复发至关重要。

HCC的分子发病机制是极其复杂和具有异质性的,HCC是正常细胞基因组突变积累导致原癌基因和抑癌基因失调的结果。原癌基因诱导细胞分裂和增殖,而抑癌基因抑制细胞增殖并导致细胞凋亡。因此,检测导致发病的遗传和表观遗传修饰可用于HCC的治疗、监测和预后管理。目前,HCC的病理特征是通过穿刺活检或术后标本获得的,传统的肝脏活检作为诊断的组织学“金标准”,可以直接观察到肿瘤细胞的结构和分化程度,对于疾病的诊断和分期以及指导治疗决策具有不可替代的价值,但是其侵入性高、样本量少、可能出现采样误差、具有操作限制和技术依赖,并且患者接受度低,由于其取样范围和肿瘤本身的复杂性,在反应肿瘤异质性方面存在局限且无法监测动态肿瘤进展,并未被常规应用于临床[12]。近年来,一种被称为液体活检(Liquid biopsy)的新型检测方法引起了广泛的关注。与传统组织活检不同的是,液体活检属于非侵入性的无创检查,安全性高,尤其适合于凝血功能障碍、肿瘤位置深在或晚期无法手术者无法耐受传统活检的患者,并且可以在病情不同的进展阶段反复取样,可动态监测肿瘤演变,实时发现耐药突变,及时调整治疗方案,指导个体化治疗。由于ctDNA来源于全身不同病灶的肿瘤细胞,可反映整体肿瘤负荷及空间异质性,减少取样偏差,在一定程度上克服肿瘤异质性,并且有可能在影像学尚未发现病灶时(如早期肝癌),ctDNA可能已释放入血,具有早期筛查潜力。血浆中游离细胞DNA (cell-free DNA, cfDNA)的存在于1948年首次被报道,但直到1989年才被认为起源于癌症患者的肿瘤细胞[3],cfDNA是通过肿瘤细胞凋亡、坏死或分泌释放到血液、尿液、脑脊液等理论上任何体液中的循环核酸标记物,其中最常被靶向的分析物就是ctDNA [14]。ctDNA从原发肿瘤中被释放出来,进入外周血液循环,携带了肿瘤特异性突变、甲基化或片段化特征,被认为是肿瘤转移的“种子和土壤”[15]。随着高通量测序技术的突破,ctDNA检测逐渐成为液体活检的核心方向。有研究证明,液体活检可用于检测和鉴别肿瘤类型、评估治疗效果、监测肿瘤复发和明确靶向药物治疗的耐药性机制等方面[16]。目前液体活检检测主要针对三类分析物:循环肿瘤DNA (ctDNA)、循环肿瘤细胞(CTCs)和外泌体(也称为细胞外囊泡) [17] [18]。本文重点关注液体活检中的ctDNA检测及其作为HCC诊断、治疗、预后评估的生物标志物的临床应用、最新研究和未来前景。

2. ctDNA生物学基础

cfDNA由肿瘤细胞释放到外周血、尿液、脑脊液等体液中,有望可用于多种肿瘤诊断、预后和监测[19] [20]。ctDNA是体液中cfDNA的一部分,起源于肿瘤细胞或吞噬了肿瘤细胞的巨噬细胞,包含了与肿瘤发生、进展和治疗耐药性相关的遗传和表观遗传突变的信息[21] [22]。这些遗传信息突变包括杂合子的缺失、抑癌基因(如TP53)和原癌基因(如KRAS和BRAF)的突变、非编码基因组DNA重复序列(如ALU和LINE1)的完整性等,理论上均可作为肿瘤的生物标志物。ctDNA的表观遗传突变包括癌症特异性组蛋白修饰、核小体定位、单核苷酸突变、拷贝数畸变、DNA甲基化等[5] [23]

目前,DNA甲基化是研究最多的表观遗传修饰,即甲基通过DNA甲基转移酶添加到胞嘧啶的C-5位置上,主要发生在CpG二核苷酸中[24]。由于ctDNA的甲基化改变发生在肿瘤发生的早期,并且有可能是可逆的,为早期癌症检测提供了极大的希望。此外,甲基化模式对每种细胞类型都是独特的,并且在生理或病理条件下都是高度稳定的。因此,识别不同的甲基化模式可作为HCC检测和诊断的潜在鉴别工具,ctDNA异常启动子甲基化可作为肝癌患者的筛查工具,尤其是早期高危人群中的小肝癌。

在HCC患者中主要可检测到ctDNA定量改变和肿瘤特异性遗传突变的定性改变,液体样本的收集比组织样本更为简便,可在肿瘤进展的过程中反复取样分析。然而,ctDNA的临床应用仍具有很大的挑战性。首先,目前使用ctDNA进行肿瘤早期诊断尚不可行。肿瘤早期阶段无法释放足够的ctDNA至外周体液中,基于现有的检测技术,很难在外周血中被检测到[25],且健康个体ctDNA也存在突变,很难与癌症相关的突变区分开来[26]。其次,由于缺乏ctDNA分离和检测的标准化,ctDNA在临床中的应用十分有限[26]。所有检测程序都可能会影响ctDNA最终测量的结果,比如基质选择、样品收集和处理程序、样品储存条件、ctDNA分离方法等[27]。第三,外周血循环DNA的数量受个体生物因素和生活方式影响。ctDNA可能只来源于某一部分肿瘤细胞的DNA,因为与其他增殖和转移活跃的肿瘤细胞相比,这类肿瘤细胞更容易死亡并且将其内容物释放到外周体液中[26]。另外,有研究表明,急性运动也会引起的ctDNA数量改变,在采集样本之前剧烈运动会导致血循环游离DNA检测结果不准确[28]。最后,在ctDNA应用于临床之前,需更加深入地理解ctDNA的生物特性及解决临床试验中标准化和检测技术相关的一些问题,如规范采样量、进一步提高分析灵敏度、检测多种突变等[29]

3. ctDNA检测方法

液体活检需要两个10 ml的血液样本,需要其中含有5 ng的DNA进行ctDNA分析[23] [30] [31]。根据检测ctDNA的目的,检测方法有所不同。大致可以分为靶向检测,即利用聚合酶链式反应技术(PCR)检测一些已知的突变,如实时荧光定量PCR (real-time PCR)、微滴式数字PCR (droplet digital PCR, ddPCR)、数字PCR-流式技术(beads, emulsion, amplification and magnetics, BEAMing)、突变扩增系统PCR (amplification-refractory mutation system, ARMS-PCR),或者对数百万个DNA片段进行分类的非靶向检测,如Sanger测序和二代测序(next-generation sequencing, NGS) [32]

3.1. 靶向检测技术

1) 实时荧光定量PCR (real-time PCR)利用已知的点突变,可检测ctDNA中的特定的单核苷酸变异。该方法简易且成本不高,但其是灵敏度低,不适用于检测大量靶向位点的突变[33]

2) 微滴式数字PCR (droplet digital PCR, ddPCR)基于水/油乳液滴技术进行PCR,可在PCR扩增前对样本进行微滴化处理,即将含有核酸分子的反应体系分成成千上万个纳升级的微滴,其中每个微滴或不含待检核酸靶分子,或者含有一个至数个待检核酸靶分子,其灵敏度非常高,且只需要很少的模板量,尤其适用于痕量、不易得到的待检样本,适合一些稀有样本中核酸的精确检测,可用于肿瘤的早期筛查、肿瘤继发性耐药检测及肿瘤负荷实时监控等[34]

3) BEAMing是一种高灵敏度的数字PCR技术,结合了数字PCR以及流式技术,基于小珠(Bead)、乳浊液(Emulsion)、扩增(Amplification)、磁性(Magnetic)这四个主要组分来构建的,所以被称作为BEAMing [35]。每一类DNA分子都会专一的与磁性珠相连接,然后DNA分子之间的差异可以通过流式细胞仪检测荧光标记来做出评估,这种方法可用来区分和定量罕见的体细胞DNA突变。

3.2. 非靶向检测技术

二代测序(next-generation sequencing, NGS)也被称为高通量测序技术,基于高通量并行测序原理,通过将样品DNA或RNA转化为文库,并在测序平台上进行大规模并行的测序反应,从而实现对基因组、转录组、表观基因组等的全面分析[23]。NGS技术通量高,选择性和特异性可达96%,然而技术流程较为复杂,检测费用昂贵,而且获得序列信息需要大约2~3周的时间[36]

目前,检测ctDNA甲基化最常用的方法是甲基化特异性PCR(Methylation-Specific PCR, MS-PCR)。该方法是基于亚硫酸氢盐处理DNA,对非甲基化胞嘧啶进行化学修饰,并将其转化为尿嘧啶,ctDNA的甲基化谱可以通过PCR或NGS等进一步研究[37] [38]

4. ctDNA在肝细胞癌中的临床应用

4.1. 早期诊断

早期HCC患者由于各方面因素通常无法进行组织活检,因此ctDNA检测在诊断早期HCC患者中显得尤其重要。DNA甲基化途径可通过改变染色质结构、DNA构象、DNA稳定性以及DNA与蛋白质相互作用从而控制基因的表达[30]。有研究已证实ctDNA作为HCC早期诊断生物标志物的可行性,甚至有研究表明,在HCC的诊断中,外周血ctDNA在早期诊断方面的有效性已超过常规诊断方法。有研究人员在81例肝细胞癌患者行肝切除术前后取外周血标本进行研究,结果提示,术前ctDNA检出率为70.4% (57/81),AFP检出率仅为56.8%,分析显示ctDNA的诊断能力优于AFP,并且术前ctDNA阳性与肿瘤大小、多发肿瘤病灶和微血管侵袭、晚期BCLC(巴塞罗那临床肝癌)、无病生存期(DFS)和总生存期(OS)相关[39]

现已有研究报道了p15 [40]、p16 [41] [42]、APC [43]、SPINT2 [44]、SFRP1 [43]、p16INK4a [45]、TFPI2 [46]、GSTP1 [47]和Ras关联结构域家族蛋白1A (RASSF1A) [48]等特定基因的DNA甲基化改变与进展性HCC相关。例如,有研究在92%的HCC受试者血浆中发现p15/p16甲基化,在48% HCC受试者中发现p15和p16同时甲基化[40]。在90%的HCC患者中可发现RASSF1A甲基化,进一步利用血清甲基化水平可以从对照组中识别出HCC患者,总体预测准确率为77.5% [49]。有研究使用由10个甲基化基因组成的组合标记面板,结果表明训练队列的敏感性和特异性分别为85.7%和94.3%,验证队列的敏感性和特异性分别为83.3%和90.5% [50]。在另一个使用由32个基因组成的基因组研究中,结果显示与AFP相比,其在鉴别早期或微小肿瘤(≤2 cm)与非HCC疾病方敏感性更高[51]

4.2. 指导个性化治疗

ctDNA可用于检测HCC患者对靶向药物敏感的基因位点及阐明其可能的耐药机制。有研究对35例HCC患者进行了ctDNA检测,结果表明ctDNA可以替代传统活检作为一种分析HCC患者基因组的检测,其主要优势在于其能够携带HCC原发和转移病灶的全部生物信息[52]。肿瘤基因突变的特征可能会随着时间的推移而改变,而ctDNA可在治疗过程中反复取样进行分析,有研究指出通过ctDNA分析可在大约90%的HCC患者中检测到至少有一种潜在药物敏感基因改变[30]

ctDNA能够监测不同突变体的纵向变化和对治疗的反应[53]。对于晚期HCC患者,推荐使用检查点抑制剂进行免疫治疗,索拉非尼是第一个被批准用于晚期HCC患者一线全身治疗的药物,也是第一个在III期随机对照试验中被证明可以延长晚期HCC患者生存期的全身治疗药物[54]。在一项以HNF1A基因突变为中心的研究中,50%的患者HNF1A基因在开始使用索拉非尼之前就已经表现出变异,但是治疗到8周时,只有1例患者仍呈阳性,表明索拉非尼治疗效果良好,然而,在使用索拉非尼后的第一次随访中,该变异显示出82%的突变等位基因频率,这一发现表明癌细胞的克隆扩增不再对索拉非尼治疗有反应,研究揭示了ctDNA也可作为索拉非尼耐药的生物标志物。另外,在一项纳入了85例接受阿替利珠单抗联合贝伐珠单抗治疗的不可切除HCC患者的研究中,ctDNA分析检测到了25种HCC相关癌症基因的突变,其结果可证明ctDNA分析是预测抗PD-L1和抗VEGF联合免疫治疗的不可切除HCC患者预后良好的生物标志物[55]

4.3. 预后监测

目前,HCC早期复发主要通过血清AFP水平和肝脏超声检测,其敏感性较为有限[56] [57],而ctDNA可提高HCC早期复发的检测率。在一项长期随访HCC患者的研究中,在多个随访时间点连续收集外周血样本,在术后疑似复发并通过CT/MRI影像学已确认肿瘤存在的患者中,大多数样本(97.4%, 75/77) ctDNA检测为阳性,而未复发患者的样本(100%, 42/42)均为阴性,此外,研究结果证明在少数病例中,在MRI检查发现肿瘤复发之前,血浆样本中即可检测到ctDNA呈阳性,以提前4.6个月检测到肿瘤复发[52]

端粒酶逆转录酶(Telomerase reverse transcriptase, TERT)突变是HCC中非常常见的遗传改变,有研究在44%的HCC患者血浆中可检测到TERT突变,并与其死亡率增加有关[58]。而在另一项相关研究中,在47.7% HCC患者的血浆cfDNA中液检测到发生TERT突变与预后不良相关,此外,其结果还证明了胰岛素样生长因子结合蛋白7 (IGFBP7)的甲基化在HCC的发展中也很重要,在其纳入的155例肝切除术后HCC患者中,IGFBP7启动子甲基化与总生存率和早期肿瘤复发相关,提示其有望可作为HCC患者肝切除术后预后标志物[59]

手术切除是早期HCC患者的主要治疗方法,然而,HCC患者在接受手术干预后5年复发率为60%,ctDNA的特异性突变可作为HCC患者术后复发的生物标志物[39] [52]。在相关研究中,63.4%的HCC患者中术前可检测到ctDNA,而在根治性肝脏切除术后,只有46%的患者可检测到ctDNA。连续ctDNA监测可以很好地反映肿瘤载量的实时变化,术前ctDNA检测与肿瘤大小、分化程度、微血管侵袭和早期复发有关,表明了ctDNA在监测肿瘤进展中的作用[16]

5. 讨论及展望

目前,经FDA批准的用于非小细胞肺癌、结直肠癌和乳腺癌ctDNA检测包括以下五种:Foundation One Liquid CDx,Guardant360 CDx,cobas EGFR突变检测v2,Therascreen PIK3CA RGQ PCR Kit和Epi ProColon [9]。ctDNA检测正在从科学研究过渡到临床应用[60] [61]

应用可靠的无创生物标志物从而实现HCC患者的管理个性化至关重要。治疗HCC患者的关键在于早期发现疾病,并选择最佳的治疗方法及进行准确的监测。与其他恶性肿瘤相比,有关液体活检在HCC中的应用的数据非常有限,但来自HCC和其他恶性肿瘤的一些研究结果表明ctDNA在HCC的临床诊疗应用非常有前景。

尽管ctDNA检测理论上能克服当前HCC诊断、预后和监测中遇到的许多障碍,但其普遍的临床应用尚未得到证实,在肝细胞癌的临床应用方面仍处于初期探索阶段。目前大多数相关研究都是小型、回顾性、单中心病例对照研究,患者人口统计学差异很大,大多数研究使用ctDNA检测方法不同,导致灵敏度和特异性也各不相同。在广泛应用于临床之前,还需进一步使用统一的检测平台进行多中心、更大样本量的前瞻性研究,获得样本的程序以及ctDNA的分离、富集或检测应该标准化,为临床应用提供更有效的验证。检测标志物应具有特异性以区分早期HCC与肝硬化或慢性肝炎等其他肝脏疾病。即使在肿瘤负荷较低的早期阶段,也应该采用高灵敏度的检测方法来识别HCC。ctDNA虽然在诊断方面具有很高的特异性,但多标记分析可能会对癌症特异性提供更全面的认识。此外,目前可用的ctDNA检测方法既耗时又昂贵,而且大多数方法灵敏度不足,不能覆盖整个基因组位点。ctDNA检测需开发更先进的技术,并将液体活检技术整合到目前使用的临床检测方法中,才可为HCC患者提供更准确的诊断、预后和监测信息。

与传统组织活检不同,液体活检以简单和非侵入性的方式可在肿瘤的不同进展过程中反复获得样本,可用于肿瘤早期诊断和监测、治疗前后疗效评估、检测肿瘤进展复发以及确定对靶向治疗的耐药机制等方面。尽管,ctDNA有望可成为HCC患者常规生物标志物和组织活检的补充或替代的新型生物标志物,在其广泛地应用于临床之前,仍具有很大的挑战性。

NOTES

*通讯作者。

参考文献

[1] Dasgupta, P., Henshaw, C., Youlden, D.R., Clark, P.J., Aitken, J.F. and Baade, P.D. (2020) Global Trends in Incidence Rates of Primary Adult Liver Cancers: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 10, Article 171.
https://doi.org/10.3389/fonc.2020.00171
[2] Yang, D., Hanna, D.L., Usher, J., LoCoco, J., Chaudhari, P., Lenz, H., et al. (2014) Impact of Sex on the Survival of Patients with Hepatocellular Carcinoma: A Surveillance, Epidemiology, and End Results Analysis. Cancer, 120, 3707-3716.
https://doi.org/10.1002/cncr.28912
[3] Johnson, P., Zhou, Q., Dao, D.Y. and Lo, Y.M.D. (2022) Circulating Biomarkers in the Diagnosis and Management of Hepatocellular Carcinoma. Nature Reviews Gastroenterology & Hepatology, 19, 670-681.
https://doi.org/10.1038/s41575-022-00620-y
[4] Mohammadian, M., Bakeshei, K.A. and Mohammadian-Hafshejani, A. (2020) International Epidemiology of Liver Cancer: Geographical Distribution, Secular Trends and Predicting the Future. Journal of Preventive Medicine and Hygiene, 61, E259-E289.
[5] Ye, Q., Ling, S., Zheng, S. and Xu, X. (2019) Liquid Biopsy in Hepatocellular Carcinoma: Circulating Tumor Cells and Circulating Tumor DNA. Molecular Cancer, 18, Article No. 114.
https://doi.org/10.1186/s12943-019-1043-x
[6] Meng, Z., Ren, Q., Zhong, G., Li, S., Chen, Y., Wu, W., et al. (2021) Noninvasive Detection of Hepatocellular Carcinoma with Circulating Tumor DNA Features and α-Fetoprotein. The Journal of Molecular Diagnostics, 23, 1174-1184.
https://doi.org/10.1016/j.jmoldx.2021.06.003
[7] Colombo, F., Baldan, F., Mazzucchelli, S., Martin-Padura, I., Marighetti, P., Cattaneo, A., et al. (2011) Evidence of Distinct Tumour-Propagating Cell Populations with Different Properties in Primary Human Hepatocellular Carcinoma. PLOS ONE, 6, e21369.
https://doi.org/10.1371/journal.pone.0021369
[8] Renzulli, M. and Golfieri, R. (2015) Proposal of a New Diagnostic Algorithm for Hepatocellular Carcinoma Based on the Japanese Guidelines but Adapted to the western World for Patients under Surveillance for Chronic Liver Disease. Journal of Gastroenterology and Hepatology, 31, 69-80.
https://doi.org/10.1111/jgh.13150
[9] Temraz, S., Nasr, R., Mukherji, D., Kreidieh, F. and Shamseddine, A. (2022) Liquid Biopsy Derived Circulating Tumor Cells and Circulating Tumor DNA as Novel Biomarkers in Hepatocellular Carcinoma. Expert Review of Molecular Diagnostics, 22, 507-518.
https://doi.org/10.1080/14737159.2022.2094706
[10] Nakazawa, T., Hidaka, H., Takada, J., Okuwaki, Y., Tanaka, Y., Watanabe, M., et al. (2013) Early Increase in α-Fetoprotein for Predicting Unfavorable Clinical Outcomes in Patients with Advanced Hepatocellular Carcinoma Treated with Sorafenib. European Journal of Gastroenterology & Hepatology, 25, 683-689.
https://doi.org/10.1097/meg.0b013e32835d913b
[11] Kudo, A., Matsumura, S., Ban, D., Irie, T., Ochiai, T., Tanaka, S., et al. (2014) Does the Preoperative Alpha-Fetoprotein Predict the Recurrence and Mortality after Hepatectomy for Hepatocellular Carcinoma without Macrovascular Invasion in Patients with Normal Liver Function? Hepatology Research, 44, E437-E446.
https://doi.org/10.1111/hepr.12335
[12] Li, J., Han, X., Yu, X., Xu, Z., Yang, G., Liu, B., et al. (2018) Clinical Applications of Liquid Biopsy as Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma: Circulating Tumor Cells and Circulating Tumor DNA. Journal of Experimental & Clinical Cancer Research, 37, Article No. 213.
https://doi.org/10.1186/s13046-018-0893-1
[13] 杨小周, 张灵强, 王凯强, 等. 循环肿瘤细胞与循环肿瘤DNA在肝细胞癌中的研究进展[J]. 河北医药, 2023, 45(3): 446-450.
[14] 叶婷丹, 雷学忠. 早期肝癌无创诊断之匙——循环游离DNA联合型液体活检[J]. 临床肝胆病杂志, 2022, 38(4): 923-926.
[15] Kustanovich, A., Schwartz, R., Peretz, T. and Grinshpun, A. (2019) Life and Death of Circulating Cell-Free DNA. Cancer Biology & Therapy, 20, 1057-1067.
https://doi.org/10.1080/15384047.2019.1598759
[16] Zhu, G., Liu, W., Tang, Z., Qu, W., Fang, Y., Jiang, X., et al. (2021) Serial Circulating Tumor DNA to Predict Early Recurrence in Patients with Hepatocellular Carcinoma: A Prospective Study. Molecular Oncology, 16, 549-561.
https://doi.org/10.1002/1878-0261.13105
[17] Kopystecka, A., Patryn, R., Leśniewska, M., Budzyńska, J. and Kozioł, I. (2023) The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma—Literature Review. International Journal of Molecular Sciences, 24, Article 9342.
https://doi.org/10.3390/ijms24119342
[18] Renzulli, M., Pecorelli, A., Brandi, N., Brocchi, S., Tovoli, F., Granito, A., et al. (2022) The Feasibility of Liver Biopsy for Undefined Nodules in Patients under Surveillance for Hepatocellular Carcinoma: Is Biopsy Really a Useful Tool? Journal of Clinical Medicine, 11, Article 4399.
https://doi.org/10.3390/jcm11154399
[19] Krishnamurthy, N., Spencer, E., Torkamani, A. and Nicholson, L. (2017) Liquid Biopsies for Cancer: Coming to a Patient near You. Journal of Clinical Medicine, 6, Article 3.
https://doi.org/10.3390/jcm6010003
[20] Freitas, A.J.A.D., Causin, R.L., Varuzza, M.B., et al. (2022) Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. International Journal of Molecular Sciences, 23, 9952.
https://doi.org/10.3390/ijms23179952
[21] Crowley, E., Di Nicolantonio, F., Loupakis, F. and Bardelli, A. (2013) Liquid Biopsy: Monitoring Cancer-Genetics in the Blood. Nature Reviews Clinical Oncology, 10, 472-484.
[22] 李少平, 王迪, 杨若巍, 等. 液体活检在肿瘤诊疗全程管理中的现状及展望[J]. 中国临床研究, 2024, 37(6): 959-964.
[23] Ding, Y., Yao, J., Wen, M., Liu, X., Huang, J., Zhang, M., et al. (2022) The Potential, Analysis and Prospect of ctDNA Sequencing in Hepatocellular Carcinoma. PeerJ, 10, e13473.
https://doi.org/10.7717/peerj.13473
[24] Luo, H., Wei, W., Ye, Z., Zheng, J. and Xu, R. (2021) Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends in Molecular Medicine, 27, 482-500.
https://doi.org/10.1016/j.molmed.2020.12.011
[25] Pons-Belda, O.D., Fernandez-Uriarte, A. and Diamandis, E.P. (2021) Can Circulating Tumor DNA Support a Successful Screening Test for Early Cancer Detection? The Grail Paradigm. Diagnostics, 11, Article 2171.
https://doi.org/10.3390/diagnostics11122171
[26] Fiala, C. and Diamandis, E.P. (2018) Utility of Circulating Tumor DNA in Cancer Diagnostics with Emphasis on Early Detection. BMC Medicine, 16, Article No. 166.
https://doi.org/10.1186/s12916-018-1157-9
[27] Ungerer, V., Bronkhorst, A.J. and Holdenrieder, S. (2020) Preanalytical Variables That Affect the Outcome of Cell-Free DNA Measurements. Critical Reviews in Clinical Laboratory Sciences, 57, 484-507.
https://doi.org/10.1080/10408363.2020.1750558
[28] Yuwono, N.L., Warton, K. and Ford, C.E. (2021) The Influence of Biological and Lifestyle Factors on Circulating Cell-Free DNA in Blood Plasma. eLife, 10, e69679.
https://doi.org/10.7554/elife.69679
[29] 梁人山, 张育, 陈祖涛, 等. 液体活检在肝癌中的研究进展[J]. 肝癌电子杂志, 2024, 11(1): 30-33.
[30] Ikeda, S., Lim, J.S. and Kurzrock, R. (2018) Analysis of Tissue and Circulating Tumor DNA by Next-Generation Sequencing of Hepatocellular Carcinoma: Implications for Targeted Therapeutics. Molecular Cancer Therapeutics, 17, 1114-1122.
https://doi.org/10.1158/1535-7163.mct-17-0604
[31] Gao, Y., Zhao, H., An, K., Liu, Z., Hai, L., Li, R., et al. (2022) Whole-Genome Bisulfite Sequencing Analysis of Circulating Tumour DNA for the Detection and Molecular Classification of Cancer. Clinical and Translational Medicine, 12, e1014.
https://doi.org/10.1002/ctm2.1014
[32] Mody, K., Kasi, P.M., Yang, J.D., Surapaneni, P.K., Ritter, A., Roberts, A., et al. (2019) Feasibility of Circulating Tumor DNA Testing in Hepatocellular Carcinoma. Journal of Gastrointestinal Oncology, 10, 745-750.
https://doi.org/10.21037/jgo.2019.02.10
[33] Keppens, C., Palma, J.F., Das, P.M., Scudder, S., Wen, W., Normanno, N., et al. (2018) Detection of EGFR Variants in Plasma. The Journal of Molecular Diagnostics, 20, 483-494.
https://doi.org/10.1016/j.jmoldx.2018.03.006
[34] Postel, M., Roosen, A., Laurent-Puig, P., Taly, V. and Wang-Renault, S. (2017) Droplet-Based Digital PCR and Next Generation Sequencing for Monitoring Circulating Tumor DNA: A Cancer Diagnostic Perspective. Expert Review of Molecular Diagnostics, 18, 7-17.
https://doi.org/10.1080/14737159.2018.1400384
[35] Diehl, F., Schmidt, K., Durkee, K.H., Moore, K.J., Goodman, S.N., Shuber, A.P., et al. (2008) Analysis of Mutations in DNA Isolated from Plasma and Stool of Colorectal Cancer Patients. Gastroenterology, 135, 489-498.E7.
https://doi.org/10.1053/j.gastro.2008.05.039
[36] Lanman, R.B., Mortimer, S.A., Zill, O.A., Sebisanovic, D., Lopez, R., Blau, S., et al. (2015) Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLOS ONE, 10, e0140712.
https://doi.org/10.1371/journal.pone.0140712
[37] Mastoraki, S., Strati, A., Tzanikou, E., Chimonidou, M., Politaki, E., Voutsina, A., et al. (2018) ESR1 Methylation: A Liquid Biopsy-Based Epigenetic Assay for the Follow-Up of Patients with Metastatic Breast Cancer Receiving Endocrine Treatment. Clinical Cancer Research, 24, 1500-1510.
https://doi.org/10.1158/1078-0432.ccr-17-1181
[38] Cheng, T.H.T., Jiang, P., Tam, J.C.W., Sun, X., Lee, W., Yu, S.C.Y., et al. (2017) Genomewide Bisulfite Sequencing Reveals the Origin and Time-Dependent Fragmentation of Urinary cfDNA. Clinical Biochemistry, 50, 496-501.
https://doi.org/10.1016/j.clinbiochem.2017.02.017
[39] Wang, J., Huang, A., Wang, Y., Yin, Y., Fu, P., Zhang, X., et al. (2020) Circulating Tumor DNA Correlates with Microvascular Invasion and Predicts Tumor Recurrence of Hepatocellular Carcinoma. Annals of Translational Medicine, 8, 237-237.
https://doi.org/10.21037/atm.2019.12.154
[40] Zhang, Y., Wu, H., Shen, J., Ahsan, H., Tsai, W.Y., Yang, H., et al. (2007) Predicting Hepatocellular Carcinoma by Detection of Aberrant Promoter Methylation in Serum DNA. Clinical Cancer Research, 13, 2378-2384.
https://doi.org/10.1158/1078-0432.ccr-06-1900
[41] Bai, Y., Shen, Y., Yuan, Q., Lv, C. and Xing, Q. (2019) Evaluation of Relationship between Occurrence of Liver Cancer and Methylation of Fragile Histidine Triad (FHIT) and P16 Genes. Medical Science Monitor, 25, 1301-1306.
https://doi.org/10.12659/msm.912315
[42] Lin, Q., Chen, L., Tang, Y. and Wang, J. (2005) Promoter Hypermethylation of P16 Gene and DAPK Gene in Sera from Hepatocellular Carcinoma (HCC) Patients. Chinese Journal of Cancer Research, 17, 250-254.
https://doi.org/10.1007/s11670-005-0020-7
[43] Huang, Z., Hu, Y., Hua, D., Wu, Y., Song, M. and Cheng, Z. (2011) Quantitative Analysis of Multiple Methylated Genes in Plasma for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Experimental and Molecular Pathology, 91, 702-707.
https://doi.org/10.1016/j.yexmp.2011.08.004
[44] Iizuka, N., Oka, M., Sakaida, I., Moribe, T., Miura, T., Kimura, N., et al. (2011) Efficient Detection of Hepatocellular Carcinoma by a Hybrid Blood Test of Epigenetic and Classical Protein Markers. Clinica Chimica Acta, 412, 152-158.
https://doi.org/10.1016/j.cca.2010.09.028
[45] Huang, G., Krocker, J.D., Kirk, J.L., Merwat, S.N., Ju, H., Soloway, R.D., et al. (2014) Evaluation of INK4A Promoter Methylation Using Pyrosequencing and Circulating Cell-Free DNA from Patients with Hepatocellular Carcinoma. Clinical Chemistry and Laboratory Medicine (CCLM), 52, 899-909.
https://doi.org/10.1515/cclm-2013-0885
[46] Sun, F., Fan, Y., Zhao, J., Zhang, F., Gao, S., Zhao, Z., et al. (2012) Detection of TFPI2 Methylation in the Serum of Hepatocellular Carcinoma Patients. Digestive Diseases and Sciences, 58, 1010-1015.
https://doi.org/10.1007/s10620-012-2462-3
[47] Dong, X., Hou, Q., Chen, Y. and Wang, X. (2017) Diagnostic Value of the Methylation of Multiple Gene Promoters in Serum in Hepatitis B Virus-Related Hepatocellular Carcinoma. Disease Markers, 2017, Article 2929381.
https://doi.org/10.1155/2017/2929381
[48] Pasha, H.F., Mohamed, R.H. and Radwan, M.I. (2019) RASSF1A and SOCS1 Genes Methylation Status as a Noninvasive Marker for Hepatocellular Carcinoma. Cancer Biomarkers, 24, 241-247.
[49] Mohamed, N.A., Swify, E.M., Amin, N.F., Soliman, M.M., Tag-Eldin, L.M. and Elsherbiny, N.M. (2012) Is Serum Level of Methylated RASSF1A Valuable in Diagnosing Hepatocellular Carcinoma in Patients with Chronic Viral Hepatitis C? Arab Journal of Gastroenterology, 13, 111-115.
https://doi.org/10.1016/j.ajg.2012.06.009
[50] Xu, R., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., et al. (2017) Circulating Tumour DNA Methylation Markers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Nature Materials, 16, 1155-1161.
https://doi.org/10.1038/nmat4997
[51] Cai, J., Chen, L., Zhang, Z., Zhang, X., Lu, X., Liu, W., et al. (2019) Genome-Wide Mapping of 5-Hydroxymethylcytosines in Circulating Cell-Free DNA as a Non-Invasive Approach for Early Detection of Hepatocellular Carcinoma. Gut, 68, 2195-2205.
https://doi.org/10.1136/gutjnl-2019-318882
[52] Cai, Z., Chen, G., Zeng, Y., Dong, X., Li, Z., Huang, Y., et al. (2019) Comprehensive Liquid Profiling of Circulating Tumor DNA and Protein Biomarkers in Long-Term Follow-Up Patients with Hepatocellular Carcinoma. Clinical Cancer Research, 25, 5284-5294.
https://doi.org/10.1158/1078-0432.ccr-18-3477
[53] Cai, Z., Chen, G., Zeng, Y., Dong, X., Lin, M., Huang, X., et al. (2017) Circulating Tumor DNA Profiling Reveals Clonal Evolution and Real-Time Disease Progression in Advanced Hepatocellular Carcinoma. International Journal of Cancer, 141, 977-985.
https://doi.org/10.1002/ijc.30798
[54] Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A. and Roberts, L.R. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604.
https://doi.org/10.1038/s41575-019-0186-y
[55] Matsumae, T., Kodama, T., Myojin, Y., Maesaka, K., Sakamori, R., Takuwa, A., et al. (2022) Circulating Cell-Free DNA Profiling Predicts the Therapeutic Outcome in Advanced Hepatocellular Carcinoma Patients Treated with Combination Immunotherapy. Cancers, 14, Article 3367.
https://doi.org/10.3390/cancers14143367
[56] Li, Y., Zheng, Y., Wu, L., Li, J., Ji, J., Yu, Q., et al. (2021) Current Status of ctDNA in Precision Oncology for Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 40, Article No. 140.
https://doi.org/10.1186/s13046-021-01940-8
[57] Tzartzeva, K., Obi, J., Rich, N.E., Parikh, N.D., Marrero, J.A., Yopp, A., et al. (2018) Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis: A Meta-Analysis. Gastroenterology, 154, 1706-1718.e1.
https://doi.org/10.1053/j.gastro.2018.01.064
[58] Oversoe, S.K., Clement, M.S., Pedersen, M.H., Weber, B., Aagaard, N.K., Villadsen, G.E., et al. (2020) TERT Promoter Mutated Circulating Tumor DNA as a Biomarker for Prognosis in Hepatocellular Carcinoma. Scandinavian Journal of Gastroenterology, 55, 1433-1440.
https://doi.org/10.1080/00365521.2020.1837928
[59] Jiao, J., Watt, G.P., Stevenson, H.L., Calderone, T.L., Fisher‐Hoch, S.P., Ye, Y., et al. (2018) Telomerase Reverse Transcriptase Mutations in Plasma DNA in Patients with Hepatocellular Carcinoma or Cirrhosis: Prevalence and Risk Factors. Hepatology Communications, 2, 718-731.
https://doi.org/10.1002/hep4.1187
[60] Yan, L., Chen, Y., Zhou, J., Zhao, H., Zhang, H. and Wang, G. (2018) Diagnostic Value of Circulating Cell-Free DNA Levels for Hepatocellular Carcinoma. International Journal of Infectious Diseases, 67, 92-97.
https://doi.org/10.1016/j.ijid.2017.12.002
[61] 顾心怡, 李贺明, 王喆, 等. 液体活检在消化道肿瘤诊疗中应用的研究现状[J]. 大连医科大学学报, 2020, 42(1): 76-80.

Baidu
map