二甲双胍对糖尿病患者黄斑区视网膜厚度的影响
Effect of Metformin on Retinal Thickness in the Macular Area of Diabetic Patients
DOI: 10.12677/acm.2025.1541068, PDF, HTML, XML,   
作者: 周育正, 孙奕斌, 窦雅文, 杜兆东*:青岛大学附属医院眼科,山东 青岛
关键词: 糖尿病视网膜二甲双胍OCTDiabetes Retina Metformin OCT
摘要: 目的:研究二甲双胍对糖尿病患者黄斑区视网膜厚度的影响。方法:回顾性队列研究。选择2024年10月至2024年12月于青岛大学附属医院内分泌科和眼科就诊的无视网膜病变的2型糖尿病患者32人(63眼),根据所使用降糖方案是否含有二甲双胍分为两组:二甲双胍组15人(30眼)及非二甲双胍组17人(33眼)。使用TowardPi YG-100K PRO OCT仪测量两组患者黄斑中心凹(距中心小凹直径1000 μm)及黄斑上方、下方、鼻侧、颞侧(距离中心小凹直径3000 μm)区域的视网膜厚度及神经节细胞复合体(GCC)厚度。统计学分析两组患者黄斑区视网膜厚度及GCC厚度是否存在统计学差异。结果:两组基线资料(性别、年龄、糖尿病病程)无统计学差异(P > 0.05)。二甲双胍组患者黄斑中心凹、上方、下方、鼻侧及颞侧视网膜厚度平均值高于非二甲双胍组,两组之间差异均有统计学意义( t = 4.57, P < 0.01; U = 210.50, P < 0.01; t = 3.42, P < 0.01; t = 5.57, P < 0.01; t = 5.79, P < 0.01)。二甲双胍组较非二甲双胍组二甲双胍组患者患者黄斑中心凹、上方、下方及鼻侧视网膜GCC厚度平均值高于非二甲双胍组,两组之间差异均有统计学意义( U = 122.50, P = 0.035; t = 2.09, P = 0.045; t = 2.04, P = 0.049; U = 344, P = 0.044)。二甲双胍组患者颞侧视网膜GCC厚度平均值高于非二甲双胍组,差异无统计学意义( t = 1.81, P = 0.078)。结论:二甲双胍可能对糖尿病患者黄斑区视网膜厚度的减少具有抑制作用。
Abstract: Objective: To investigate the effects of metformin on macular retinal thickness in patients with diabetes mellitus. Methods: A retrospective cohort study included 32 type 2 diabetes patients (63 eyes) without retinopathy from Qingdao University Affiliated Hospital (October-December 2024), divided into metformin (15 patients, 30 eyes) and non-metformin groups (17 patients, 33 eyes); macular retinal thickness and ganglion cell complex (GCC) thickness were measured at central fovea (1000 μm from the central recess) and superior/inferior/nasal/temporal perifoveal regions (3000 μm from the central recess) using TowardPi YG-100K PRO OCT. Statistical analysis of whether the retinal thickness and GCC thickness in the macular area were different between the two groups. Results: There was no statistical difference in baseline data (gender, age, diabetes duration) between the two groups ( P > 0.05). The metformin group exhibited higher mean retinal thickness in the central fovea, superior, inferior, nasal, and temporal regions compared to the non-metformin group, with statistically significant differences observed between the two groups (central fovea: t = 4.57, P < 0.01; superior: U = 210.50, P < 0.01; inferior: t = 3.42, P < 0.01; nasal: t = 5.57, P < 0.01; temporal: t = 5.79, P < 0.01). The metformin group also demonstrated higher mean GCC thickness in the central fovea, superior, inferior, and nasal regions compared to the non-metformin group, with statistically significant differences (central fovea: U = 122.50, P = 0.035; superior: t = 2.09, P = 0.045; inferior: t = 2.04, P = 0.049; nasal: U = 344, P = 0.044). However, although the mean temporal GCC thickness in the metformin group was higher than in the non-metformin group, the difference was not statistically significant ( t = 1.81, P = 0.078). Conclusion: Metformin may have an inhibitory effect on the reduction of retinal thickness in the macular area in diabetic patients.
文章引用:周育正, 孙奕斌, 窦雅文, 杜兆东. 二甲双胍对糖尿病患者黄斑区视网膜厚度的影响[J]. 临床医学进展, 2025, 15(4): 1370-1376. https://doi.org/10.12677/acm.2025.1541068

1. 引言

糖尿病视网膜病变(diabetic retinopathy, DR)是一种由于慢性高血糖引起的神经血管单元紊乱性疾病[1]。目前DR的诊断标准主要依赖于辅助检查对视网膜血管损伤表现的观察结果来制定[2]。长期慢性高血糖会导致视网膜微血管病变,但糖尿病所造成的直接视网膜神经元损伤可能早于视网膜血管的明显变化[3]。研究表明,非增殖性糖尿病视网膜病变患者视网膜总厚度和/或内层视网膜厚度普遍较正常对照组降低[4]。认识早期糖尿病视网膜结构变化,将有助于DR的精准筛查和有效防治。

二甲双胍是一种广泛用于治疗2型糖尿病的药物,但随着对二甲双胍多效性作用的探索,发现二甲双胍不仅能有效穿透血脑屏障,还展现出多重神经保护特性,包括改善认知功能障碍、延缓亨廷顿舞蹈病进展、减轻脑卒中后神经损伤以及潜在的阿尔茨海默病防治作用[5]-[7]。然而,目前尚无研究探讨二甲双胍是否影响糖尿病患者视网膜厚度,通过调节视网膜结构发挥对视网膜的保护作用。

因此,本研究采用光学相干断层扫描(Optical coherence tomography, OCT)测量使用和不使用二甲双胍治疗的糖尿病患者黄斑区视网膜厚度和神经节细胞复合体(Ganglion cell complex, GCC)厚度,探讨二甲双胍对黄斑区视网膜结构的影响,为二甲双胍的视网膜神经保护作用提供理论依据。

2. 材料与方法

2.1. 研究对象

本研究为回顾性队列研究,纳入2024年10月至12月在青岛大学附属医院内分泌科和眼科就诊的无视网膜病变的2型糖尿病患者32例(63眼)。本研究共收集临床诊断为2型糖尿病患者。纳入标准:(1) 年龄在30~70岁之间,思维清晰,能主动配合检查;(2) 诊断为2型糖尿病,接受内科医生指导的降糖方案;(3) 检眼镜和眼底照相未发现视网膜病变。排除标准:(1) 屈光度 ≥ +3.00 D或≤−3.00 D;(2) 在6个月内接受了白内障超声乳化摘除和人工晶状体植入手术者;(3) 既往接受青光眼手术,眼底激光或玻璃体视网膜手术治疗者;(4) 患有其他眼部疾病,如年龄相关性黄斑变性、视网膜静脉阻塞、黄斑前膜、黄斑裂孔及任何原因引起的视网膜病变等;(5) 固视性差或严重的屈光性间质混浊,影响眼底检查者;(6) 使用糖皮质激素治疗者;(7) 全身性疾病,包括血液病、心功能不全、冠心病、系统性红斑狼疮和贫血患者;(8) 未能获得合格图像或晶状体混浊的形态及晶状体核混浊程度影响黄斑敏感性测量[8]。将入选对象根据所使用降糖方案是否含有二甲双胍分为两组:二甲双胍组15人(30眼)及非二甲双胍组17人(33眼)。本研究方案经青岛大学附属医院医学伦理委员会审批,患者签署知情同意书,并遵循赫尔辛基宣言。

2.2. 样本采集和分析

2.2.1. 眼科基本检查

采用国际标准视力表,由专业的验光师进行验光检查。应用SL130裂隙灯显微镜(CarlZeiss, Germany)进行眼前节检查,并在使用0.5%复方托吡卡胺滴眼液散瞳后进行视网膜检查。

2.2.2. 眼底照相检查

由一名经验丰富的操作人员使用Daytona P200T (Nikon, Japan)进行双眼眼底照相检查。

2.2.3. OCT检查

患者坐位,下颌放置托架。由一名经验丰富的操作人员使用YG-100K PRO OCT仪(TowardPi Medical Technology Ltd., China)进行眼底线性扫描,扫描时选取黄斑中心凹为中心,采用内注视,即检查眼注视镜头内的注视点,对黄斑区进行范围为6 mm × 6 mm的采样。由两位具有丰富经验的医师进行独立阅片,对图像进行分析测量后获取OCT相关参数。记录各组黄斑区中央直径为1000 μm范围及直径为3000 μm范围上方、下方、鼻侧、颞侧视网膜平均厚度(ILM-RPE)及GCC (RNFL-IPL)平均厚度,平均厚度由OCT仪计算机辅助计算,其中中心凹区域进行约7000次测量,上方、下方、鼻侧、颞侧区域进行约14,000次测量。最终数据结果取两位医师测量的平均值。

2.3. 统计分析

统计学处理采用Prism10.0 (GraphPad, China)统计软件进行分析。Shapiro-Wilk检验用于检验连续变量的正态性。与正态分布一致的数据使用Student t检验进行分析;不符合正态分布的数据使用Mann-Whitney U检验进行分析。分类变量以n (%)表示,并使用卡方检验或Fisher检验进行分析。P < 0.05为差异具有统计学意义。

3. 结果

3.1. 两组患者基本资料比较

二甲双胍组15例患者30只眼,非二甲双胍组17例患者33只眼,两组患者的年龄、性别、及糖尿病病程之间差异均无统计学差异(P > 0.05)。见表1

Table 1. Comparison of the basic data of the subjects in both groups

1. 两组患者基本资料对比

基本资料

二甲双胍组

N = 15 (30 eyes)

非二甲双胍组

N = 17 (33 eyes)

P Value

性别,n (%)

0.4916

7 (46.67)

10 (58.82)

8 (53.33)

7 (41.18)

年龄(years)

60.73 ± 8.93

58.94 ± 5.08

0.7036

糖尿病病程(years)

10.67 ± 4.89

8.29 ± 2.83

0.2399

3.2. 两组患者黄斑区视网膜厚度比较

OCT对黄斑区视网膜厚度的测量结果显示,二甲双胍组患者黄斑中心凹、上方、下方、鼻侧、颞侧视网膜厚度平均值分别为:(277.4 ± 14.4) μm,(340.0 ± 9.9) μm,(332.4 ± 11.2) μm,(342.4 ± 10.3) μm,(331.1 ± 10.6) μm,非二甲双胍组患者黄斑中央、上方、下方、鼻侧、颞侧视网膜厚度平均值分别为:(237.4 ± 10.9) μm,(309.0 ± 7.4) μm,(293.5 ± 19.5) μm,(331.1 ± 10.6) μm,(294.1 ± 7.8) μm。对两组数据采用t检验或Mann-Whitney U检验进行统计学分析,结果显示两组患者视网膜厚度在各方向差异均有统计学意义(t = 4.57, P < 0.01; U = 210.50, P < 0.01; t = 3.42, P < 0.01; t = 5.57, P < 0.01; t = 5.79, P < 0.01)。见表2

Table 2. Comparison of the retinal thickness in the macular area between the two groups

2. 两组患者黄斑区视网膜厚度比较

视网膜厚度(μm)

二甲双胍组

N = 15 (30 eyes)

非二甲双胍组

N = 17 (33 eyes)

P Value

中心凹

277.4 ± 14.4

237.4 ± 10.9

<0.0001

上方

340.0 ± 9.9

309.0 ± 7.4

<0.0001

下方

332.4 ± 11.2

293.5 ± 19.5

0.0011

鼻侧

342.4 ± 10.3

331.1 ± 10.6

<0.0001

颞侧

331.1 ± 10.6

294.1 ± 7.8

<0.0001

3.3. 两组患者黄斑区视网膜GCC厚度比较

OCT对黄斑区GCC厚度的测量结果显示,二甲双胍组患者黄斑中心凹、上方、下方、鼻侧、颞侧GCC厚度平均值分别为:(50.6 ± 5.2) μm,(103.3 ± 7.6) μm,(100.9 ± 8.7) μm,(106.4 ± 7.3) μm,(98.9 ± 7.9) μm,非二甲双胍组患者黄斑中央、上方、下方、鼻侧、颞侧视网膜厚度平均值分别为:(44.0 ± 3.4) μm,(95.2 ± 4.1) μm,(91.0 ± 5.2) μm,(95.1 ± 4.1) μm,(91.2 ± 4.1) μm。对两组数据采用t检验或Mann-Whitney U检验进行统计学分析,结果显示两组患者GCC厚度在中央、上方、下方、鼻侧差异均有统计学意义(U = 122.50, P = 0.035; t = 2.09, P = 0.045; t = 2.04, P = 0.049; U = 344, P = 0.044),两组患者颞侧GCC厚度差异无统计学意义(t = 1.81, P = 0.078)。见表3

Table 3. Comparison of GCC thickness in the macular area in the two groups

3. 两组患者黄斑区GCC厚度比较

GCC (μm)

二甲双胍组

N = 15 (30 eyes)

非二甲双胍组

N = 17 (33 eyes)

P Value

中心凹

50.6 ± 5.2

44.0 ± 3.4

0.035

上方

103.3 ± 7.6

95.2 ± 4.1

0.045

下方

100.9 ± 8.7

91.0 ± 5.2

0.049

鼻侧

106.4 ± 7.3

95.1 ± 4.1

0.044

颞侧

98.9 ± 7.9

91.2 ± 4.1

0.078

4. 讨论

视网膜结构的完整性是视功能的基础。既往研究证实,视网膜神经损伤与视网膜厚度的减少之间存在必然联系[9]-[11]。DR中视网膜神经退行性变化是DR发生发展的重要组成部分,表现为突触蛋白表达减少、树突状结构的改变、谷氨酸能和多巴胺能神经递质信号传导受损等,进而引起神经元发生凋亡[12] [13]。高血糖刺激了多种复杂机制和途径的级联反应,这些机制和途径诱导氧化应激和有毒的糖基化产物,最终导致神经元功能障碍和死亡[14] [15]

研究显示[16]-[18],尚未出现或仅表现出轻度DR的糖尿病患者较无糖尿病的志愿者相比,其视网膜内层结构已呈现显著变薄特征,特别是视网膜神经节细胞(retinal ganglial cells, RGC)层。有学者使用对比灵敏度仪[19] [20]、视野计和微视野计等方法评估未出现DR或早期DR的糖尿病患者的视觉灵敏度[21] [22],结果证实未出现DR或早期DR的糖尿病患者已出现视网膜功能受损迹象。Montesarno等人研究表明[23],视网膜厚度的减少与视觉敏感度的变化具有相关性。但是其相关性较弱,约40 μm的厚度损失会产生1 dB微视野灵敏度损失[24]。患者在糖尿病引起早期视网膜厚度的变化时,难以通过视觉的变化觉察出病变的发生。

GCC由内丛状层(inner plexiform layer, IPL)、神经节细胞层(ganglion cell layer, GCL)、神经纤维层(retinal nerve fiber layer, RNFL)这3层结构组成,分别代表RGC的树突、胞体以及轴突,其厚度能更加直观、独立地反映RGC的退化和轴突损伤[25]。近年来,越来越多的研究开始利用黄斑区GCC厚度来监测视网膜及视神经病变[26] [27]

二甲双胍由于其潜在的神经保护特性正受到越来越多的关注[28] [29]。在对二甲双胍多效性作用的研究中表明,二甲双胍能够通过激活AMPK改善阿尔茨海默病患者的神经元功能,并能够增强触觉敏感性[30]。在眼科研究中发现,二甲双胍可能在筛板水平抑制RGC轴突的炎症、纤维化和线粒体功能障碍[31],在急性青光眼小鼠模型中发现二甲双胍可能通过抑制RGCs铁死亡和减少视网膜炎症来减少RGCs的丢失[32]。Kim等人的研究表明,在STZ诱导的糖尿病小鼠模型中二甲双胍能够减少视网膜神经节细胞层(GCL)细胞的死亡[33]。因此,二甲双胍可能对糖尿病患者黄斑区视网膜的损伤具有保护作用。

OCT作为一种非侵入性高分辨率成像技术,能够实现活体生物组织高分辨率的横断面成像,通过定量分析视网膜各层厚度参数及黄斑区多维形态学特征,为视网膜疾病的诊断提供客观依据[34]。本研究基于OCT影像对黄斑区视网膜全层厚度和GCC厚度进行定量分析,从而评估黄斑区视网膜神经结构的损伤程度。

本研究以无视网膜病变的糖尿病病人为研究对象,以尽量排除血管病变对视网膜结构的影响。研究结果表明,未使用二甲双胍治疗的病人,黄斑区视网膜全层厚度较使用二甲双胍的病人更薄,且在黄斑中心凹、上方、下方及鼻侧视网膜GCC的厚度也较使用二甲双胍的病人更薄证明二甲双胍可能对糖尿病患者黄斑区视网膜全层厚度和GCC厚度的减少是一项保护因素。而且说明两组病人黄斑区视网膜厚度的差异并非单纯由于GCC因素的差异所致。二甲双胍对视网膜神经保护作用的具体作用和机制仍需进一步探索。

综上所述,使用OCT测量视网膜厚度变化能够在一定程度上反应视网膜的神经功能损伤本研究证实,二甲双胍可能对糖尿病患者视网膜厚度的减少具有抑制作用,具有潜在的视网膜结构和神经保护功能,为二甲双胍在糖尿病眼病防治领域的应用提供了理论依据。然而,本研究仍存在若干局限性,需在后续研究中加以完善。首先,尽管已控制多种混杂变量,但仍可能存在未观测的混杂因素(如患者的生活方式、饮食习惯、合并用药情况等)对研究结果产生潜在影响。其次,由于缺乏二甲双胍的具体剂量和使用时长数据,可能影响对其视网膜保护效应的准确评估。第三,本研究为单中心设计且样本量相对有限,研究结论的普适性有待通过大样本、多中心的前瞻性研究进一步验证。最后,本研究仅初步揭示了二甲双胍与视网膜厚度之间的相关性,其具体作用机制仍需通过分子生物学实验和动物模型研究进行深入探讨。

NOTES

*通讯作者。

参考文献

[1] Fung, T.H., Patel, B., Wilmot, E.G. and Amoaku, W.M. (2022) Diabetic Retinopathy for the Non-Ophthalmologist. Clinical Medicine, 22, 112-116.
https://doi.org/10.7861/clinmed.2021-0792
[2] 邵毅, 周琼. 糖尿病视网膜病变诊治规范——2018年美国眼科学会临床指南解读[J]. 眼科新进展, 2019, 39(6): 501-506.
[3] Kim, K., Kim, E.S. and Yu, S. (2018) Longitudinal Relationship between Retinal Diabetic Neurodegeneration and Progression of Diabetic Retinopathy in Patients with Type 2 Diabetes. American Journal of Ophthalmology, 196, 165-172.
https://doi.org/10.1016/j.ajo.2018.08.053
[4] Montesano, G., Ometto, G., Higgins, B.E., Das, R., Graham, K.W., Chakravarthy, U., et al. (2021) Evidence for Structural and Functional Damage of the Inner Retina in Diabetes with No Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 62, Article No. 35.
https://doi.org/10.1167/iovs.62.3.35
[5] Campbell, J.M., Stephenson, M.D., de Courten, B., Chapman, I., Bellman, S.M. and Aromataris, E. (2018) Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. Journal of Alzheimers Disease, 65, 1225-1236.
https://doi.org/10.3233/jad-180263
[6] Jiang, T., Yu, J., Zhu, X., Wang, H., Tan, M., Cao, L., et al. (2014) Acute Metformin Preconditioning Confers Neuroprotection against Focal Cerebral Ischaemia by Pre‐Activation of AMPK‐Dependent Autophagy. British Journal of Pharmacology, 171, 3146-3157.
https://doi.org/10.1111/bph.12655
[7] Lin, Y., Wang, K., Ma, C., Wang, X., Gong, Z., Zhang, R., et al. (2018) Evaluation of Metformin on Cognitive Improvement in Patients with Non-Dementia Vascular Cognitive Impairment and Abnormal Glucose Metabolism. Frontiers in Aging Neuroscience, 10, Article No. 227.
https://doi.org/10.3389/fnagi.2018.00227
[8] Palkovits, S., Hirnschall, N., Georgiev, S., Leisser, C. and Findl, O. (2020) Effect of Cataract Extraction on Retinal Sensitivity Measurements. Ophthalmic Research, 64, 10-14.
https://doi.org/10.1159/000507450
[9] Guo, L., Normando, E.M., Nizari, S., Lara, D. and Cordeiro, M.F. (2010) Tracking Longitudinal Retinal Changes in Experimental Ocular Hypertension Using the cSLO and Spectral Domain-OCT. Investigative Opthalmology & Visual Science, 51, 6504-6513.
https://doi.org/10.1167/iovs.10-5551
[10] Chauhan, B.C., Stevens, K.T., Levesque, J.M., Nuschke, A.C., Sharpe, G.P., O’Leary, N., et al. (2012) Longitudinal in Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice. PLOS ONE, 7, e40352.
https://doi.org/10.1371/journal.pone.0040352
[11] Tu, S., Li, K., Ding, X., Hu, D., Li, K. and Ge, J. (2019) Relationship between Intraocular Pressure and Retinal Nerve Fibre Thickness Loss in a Monkey Model of Chronic Ocular Hypertension. Eye, 33, 1833-1841.
https://doi.org/10.1038/s41433-019-0484-1
[12] D’Cruz, T.S., Weibley, B.N., Kimball, S.R. and Barber, A.J. (2012) Post-Translational Processing of Synaptophysin in the Rat Retina Is Disrupted by Diabetes. PLOS ONE, 7, e44711.
https://doi.org/10.1371/journal.pone.0044711
[13] Leung, C.K., Weinreb, R.N., Li, Z.W., Liu, S., Lindsey, J.D., Choi, N., et al. (2011) Long-Term in Vivo Imaging and Measurement of Dendritic Shrinkage of Retinal Ganglion Cells. Investigative Opthalmology & Visual Science, 52, 1539-1547.
https://doi.org/10.1167/iovs.10-6012
[14] Dimitropoulos, G. (2014) Cardiac Autonomic Neuropathy in Patients with Diabetes Mellitus. World Journal of Diabetes, 5, 17-39.
https://doi.org/10.4239/wjd.v5.i1.17
[15] Agashe, S. and Petak, S. (2018) Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist DeBakey Cardiovascular Journal, 14, 251-256.
https://doi.org/10.14797/mdcj-14-4-251
[16] Chhablani, J., Sharma, A., Goud, A., Peguda, H.K., Rao, H.L., Begum, V.U., et al. (2015) Neurodegeneration in Type 2 Diabetes: Evidence from Spectral-Domain Optical Coherence Tomography. Investigative Opthalmology & Visual Science, 56, 6333-6338.
https://doi.org/10.1167/iovs.15-17334
[17] Carpineto, P., Toto, L., Aloia, R., Ciciarelli, V., Borrelli, E., Vitacolonna, E., et al. (2016) Neuroretinal Alterations in the Early Stages of Diabetic Retinopathy in Patients with Type 2 Diabetes Mellitus. Eye, 30, 673-679.
https://doi.org/10.1038/eye.2016.13
[18] Gundogan, F.C., Akay, F., Uzun, S., Yolcu, U., Çağıltay, E. and Toyran, S. (2015) Early Neurodegeneration of the Inner Retinal Layers in Type 1 Diabetes Mellitus. Ophthalmologica, 235, 125-132.
https://doi.org/10.1159/000442826
[19] McAnany, J.J. and Park, J.C. (2018) Reduced Contrast Sensitivity Is Associated with Elevated Equivalent Intrinsic Noise in Type 2 Diabetics Who Have Mild or No Retinopathy. Investigative Opthalmology & Visual Science, 59, 2652-2658.
https://doi.org/10.1167/iovs.18-24151
[20] Stavrou, E.P. and Wood, J.M. (2003) Letter Contrast Sensitivity Changes in Early Diabetic Retinopathy. Clinical and Experimental Optometry, 86, 152-156.
https://doi.org/10.1111/j.1444-0938.2003.tb03097.x
[21] Hellgren, K., Agardh, E. and Bengtsson, B. (2014) Progression of Early Retinal Dysfunction in Diabetes over Time: Results of a Long-Term Prospective Clinical Study. Diabetes, 63, 3104-3111.
https://doi.org/10.2337/db13-1628
[22] Lobefalo, L., Verrotti, A., Mastropasqua, L., Chiarelli, F., Morgese, G. and Gallenga, P.E. (1997) Flicker Perimetry in Diabetic Children without Retinopathy. Canadian Journal of Ophthalmology, 32, 324-328.
[23] Montesano, G., Gervasoni, A., Ferri, P., Allegrini, D., Migliavacca, L., De Cillà, S., et al. (2017) Structure-Function Relationship in Early Diabetic Retinopathy: A Spatial Correlation Analysis with OCT and Microperimetry. Eye, 31, 931-939.
https://doi.org/10.1038/eye.2017.27
[24] McAnany, J.J., Park, J.C., Liu, K., Liu, M., Chen, Y., Chau, F.Y., et al. (2019) Contrast Sensitivity Is Associated with Outer‐Retina Thickness in Early‐Stage Diabetic Retinopathy. Acta Ophthalmologica, 98, e224-e231.
https://doi.org/10.1111/aos.14241
[25] Kim, K.E. and Park, K.H. (2017) Macular Imaging by Optical Coherence Tomography in the Diagnosis and Management of Glaucoma. British Journal of Ophthalmology, 102, 718-724.
https://doi.org/10.1136/bjophthalmol-2017-310869
[26] Chan, N.C.Y. and Chan, C.K.M. (2017) The Use of Optical Coherence Tomography in Neuro-Ophthalmology. Current Opinion in Ophthalmology, 28, 552-557.
https://doi.org/10.1097/icu.0000000000000418
[27] Salehi, M.A., Nowroozi, A., Gouravani, M., Mohammadi, S. and Arevalo, J.F. (2022) Associations of Refractive Errors and Retinal Changes Measured by Optical Coherence Tomography: A Systematic Review and Meta-Analysis. Survey of Ophthalmology, 67, 591-607.
https://doi.org/10.1016/j.survophthal.2021.07.007
[28] Isop, L.M., Neculau, A.E., Necula, R.D., Kakucs, C., Moga, M.A. and Dima, L. (2023) Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals, 16, Article No. 1714.
https://doi.org/10.3390/ph16121714
[29] Rotermund, C., Machetanz, G. and Fitzgerald, J.C. (2018) The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Frontiers in Endocrinology, 9, Article No. 400.
https://doi.org/10.3389/fendo.2018.00400
[30] Vázquez-Manrique, R.P., Farina, F., Cambon, K., Dolores Sequedo, M., Parker, A.J., Millán, J.M., et al. (2015) AMPK Activation Protects from Neuronal Dysfunction and Vulnerability across Nematode, Cellular and Mouse Models of Huntington’s Disease. Human Molecular Genetics, 25, 1043-1058.
https://doi.org/10.1093/hmg/ddv513
[31] Amin, S.V., Khanna, S., Parvar, S.P., Shaw, L.T., Dao, D., Hariprasad, S.M., et al. (2022) Metformin and Retinal Diseases in Preclinical and Clinical Studies: Insights and Review of Literature. Experimental Biology and Medicine, 247, 317-329.
https://doi.org/10.1177/15353702211069986
[32] 李丽君. 二甲双胍在急性青光眼小鼠模型中的保护作用及机制研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023.
[33] Kim, A.J., Chang, J.Y., Shi, L., Chang, R.C., Ko, M.L. and Ko, G.Y. (2017) The Effects of Metformin on Obesity-Induced Dysfunctional Retinas. Investigative Opthalmology & Visual Science, 58, 106-118.
https://doi.org/10.1167/iovs.16-20691
[34] Nesper, P.L., Soetikno, B.T., Zhang, H.F. and Fawzi, A.A. (2017) OCT Angiography and Visible-Light OCT in Diabetic Retinopathy. Vision Research, 139, 191-203.
https://doi.org/10.1016/j.visres.2017.05.006

Baidu
map