麻醉期间允许性高碳酸血症对术后认知功能障碍的影响
The Effect of Permissive Hypercapnia during Anesthesia on Postoperative Cognitive Dysfunction
摘要: 术后认知功能障碍(POCD)是老年患者术后最常见的并发症之一,其会增加老年患者术后其他并发症发生率、延长住院时间、增加医疗费用和30天再入院率,影响患者预后。目前,药物与非药物手段预防术后认知功能障碍(POCD)的效果尚不确切,而允许性高碳酸血症作为一种肺保护性通气策略,对肺部、大脑及心脏均有一定程度的保护作用,其对术后认知功能的改善的作用也越来越被大家重视,本文将从允许性高碳酸血症对神经炎症反应、血脑屏障、脑灌注、脑氧代谢等多方面的作用进行综述,为允许性高碳酸血症对减少术后认知功能障碍的发生提供理论依据。
Abstract: Postoperative cognitive dysfunction (POCD) is one of the most common postoperative complications in elderly patients. It will increase the incidence of other postoperative complications in elderly patients, prolong hospitalization time, increase medical expenses and 30-day readmission rate, and affect the prognosis of patients. At present, the effect of drug and non-drug methods on the prevention of postoperative cognitive dysfunction (POCD) is not clear. While permissive hypercapnia, as a lung protective ventilation strategy, has a certain degree of protective effect on the lungs, brain and heart, and its effect on the improvement of cognitive function in the postoperative time has been paid more and more attention. This article reviews the effects of permissive hypercapnia on neuroinflammatory response, blood-brain barrier, cerebral perfusion, cerebral oxygen metabolism and other aspects, and provides a theoretical basis for permissive hypercapnia to reduce the occurrence of postoperative cognitive dysfunction.
文章引用:贺龙敏, 曹俊. 麻醉期间允许性高碳酸血症对术后认知功能障碍的影响[J]. 临床医学进展, 2025, 15(4): 1358-1365. https://doi.org/10.12677/acm.2025.1541066

1. 术后认知功能障碍(POCD)概述

全世界每年估计有超过3.12亿患者接受外科手术[1],随着社会发展和生活水平的提高,人类寿命的逐渐延长和人口的增长可能会导致每年的外科手术数量继续增加[2],如何优化围术期管理,减少术后并发症如神经系统相关并发症显得十分重要。术后认知功能障碍(Postoperative cognitive dysfunction, POCD)是指麻醉和手术后患者出现神经认知功能下降,是一种中枢神经系统并发症[3],主要表现为手术后记忆力、注意力、语言流畅性、定向能力和社交技能下降等[4]。POCD通常可能持续数周、数月甚至数年的认知功能下降,且更容易在老年患者中出现。现在普遍认为POCD的发生受多种因素影响,其中包括年龄、教育水平与术前认知状态、基础疾病、手术类型、麻醉药物、术中血压、术后镇痛等[5]。POCD的发生不仅影响患者康复,延长住院时间,还可能导致其他并发症的发生,增加死亡率[6],其发生机制目前尚不完全清楚,可能的学说有神经炎症、氧化应激、脑氧代谢、神经递质失衡学说等等[7] [8]

2. 术后认知功能障碍(POCD)发生机制

2.1. 神经炎症学说

手术、麻醉的刺激会激活免疫细胞(如单核细胞和巨噬细胞)和炎症信号通路(如NF-κB和NLRP3),释放出各种炎症介质[7],而外周炎症因子可以通过迷走神经内转运体、弥散作用和受损的血脑屏障进入中枢,从而引起中枢的无菌性炎症[9]-[11]。进入中枢的炎症因子可以激活小胶质细胞合成释放炎症因子、细胞因子和氧自由基等物质,导致突触功能障碍、神经元凋亡以及抑制神经发生过程[12],从而导致认知功能障碍的发生。此外海马是学习记忆形成最重要的脑区,也是最易受外界干扰的组织区域,然而促炎因子会抑制海马神经元形成,抑制与学习和记忆功能相关的海马形态可塑性,导致认知功能障碍发生[13]

2.2. 血脑屏障学说

血脑屏障(BBB)是分隔中枢神经系统和外周神经系统的重要屏障,由内皮细胞、毛细血管以及基底膜与星形胶质细胞和周围周细胞之间的紧密连接组成[14]。血脑屏障稳态是一个动态调节的过程,受多种因素所影响,如围术期温度、疼痛(P物质等)、阿片类药物、麻醉和手术等[15]。此外,围术期炎症反应也可导致血脑屏障的破坏,手术麻醉刺激等产生的外周炎症因子可以通过受损的血脑屏障进入中枢,加重中枢神经炎症反应,从而导致认知功能障碍[16]。脑脊液/血浆白蛋白比(CPAR)和血浆S100β是评估血脑屏障通透性和血脑屏障损伤的生物标志物,有研究表明发生术后谵妄的患者围手术期CPAR和血浆S100β明显升高,提示围手术期血脑屏障被破坏与术后谵妄的严重程度与血脑屏障损伤有关[17],这提示血脑屏障的破坏可能也是导致术后认知功能障碍的一个重要原因。

2.3. 神经递质与氧化应激

神经递质失衡可能是引起术后认知功能障碍的另一途径。手术创伤不仅激活炎症反应,而且可以影响循环中乙酰胆碱(Ach)的产生,而中枢神经系统中胆碱能和多巴胺能系统的失衡可导致术后谵妄的发生[18] [19]。谷氨酸和γ-氨基丁酸(GABA)是中枢神经系统中两种重要的神经递质,谷氨酸是大脑中主要的兴奋性神经递质,而GABA是主要的抑制性神经递质,在调节脑功能和维持大脑兴奋与抑制之间的平衡中起着至关重要的作用[20],在手术过程中,大脑会经历炎症和氧化应激,这可能会导致神经递质失衡,GABA转运体的功能障碍可以破坏GABA能神经传递并损害大脑中的抑制性信号,这种兴奋性和抑制性神经传递之间的不平衡可能导致POCD和认知能力下降[21]。此外,氧化应激也与神经炎症密切相关,有动物实验表明,接受手术的大鼠表现出中枢性氧化应激和线粒体功能障碍,脑源性神经营养因子(BDNF)水平降低,从而导致手术后7天认知能力下降[22]

3. 术后认知功能障碍(POCD)预防措施

POCD可导致术后并发症增加,延长患者住院时间,增加社会医疗支出。因此,POCD的预防显得尤为重要,早期识别高危人群,尽早进行干预是十分必要的。研究表明,高龄是POCD发生发展的独立危险因素,此外包括衰老、虚弱、认知储备较少、教育和智力水平较低、既往认知障碍、术前合并症(例如糖尿病)、麻醉和手术持续时间延长均可能不同程度增加术后POCD发生的风险[7]。因此合格的术前准备、更精细化的麻醉管理、术后良好的镇痛方式等对于预防患者发生POCD可能具有积极作用[23]。但目前药物预防POCD的效果尚不确切,包括右美托咪定、舒芬太尼、地塞米松等等[24],但其中右美托咪定用于改善术后认知功能被越来越多人认可[25],此外,还有研究表明术前进行认知功能训练可能可以维持健康老年人的认知功能[26]。而近年来,越来越多的研究表示术中维持允许性高碳酸血症状态的肺保护通气策略可能对于降低患者术后认知功能障碍的发生具有一定作用。

4. 允许性高碳酸血症概述

允许性高碳酸血症(Permissive hypercapnia, PHC)定义为在小潮气量与低分钟通气量的情况下,允许PaCO2适度升高,同时允许一定程度呼吸性酸中毒的存在[27]。1990年,Hickling K G [28]等人在治疗急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS)患者时第一次提出允许性高碳酸血症(PHC)的概念。允许性高碳酸血症作为一种肺保护性通气策略,过去常用于急性肺损伤和急性呼吸窘迫综合征、哮喘以及慢性阻塞性肺疾病等方面的治疗[29]。近年来,越来越多的研究发现允许性高碳酸血症可以减少肺部并发症及炎症反应、改善神经系统功能预后[30],此外对于脑保护的作用也越来越被大家重视。

5. 允许性高碳酸血症(PHC)用于减少术后认知功能的研究现状

过去有研究发现,术中低碳酸血症与术后谵妄风险显著增高相关,且这种高风险呈持续时间依赖性相关,在持续时间较长的低ETCO2患者中,这种相关性更大[31]。而允许性高碳酸血症作为一种肺保护性通气策略,其对于减少术后认知功能障碍的有效性已在近年来逐渐被人们发现。

Gao [32]等人的研究发现,在进行胸科手术单肺通气时,维持一定程度的高碳酸血症(PaCO2: 60~70 mmHg)可以降低患者术后血清促炎因子IL-1β、IL-6、IL-8以及血清C3a和CRP的浓度,升高血清抗炎因子IL-10水平,从而减少全身术后炎症反应。在一项允许性高碳酸血症应用于心脏瓣膜置换术的研究中显示,术中将允许性高碳酸血症组PaCO2维持在46~60 mmHg之间,术后24小时允许性高碳酸血症组的MMSE评分显著高于对照组,但两组术后第7天评分差异无统计学意义,这些结果表明允许性高碳酸血症可以帮助改善早期POCD [33]

在一项对择期大手术的人群中的随机对照试验发现,维持轻度高碳酸血症(PaCO2在45~55 mmHg)可增加脑氧饱和度(rSO2),这种效应随着时长的增加更加明显,且高碳酸血症组较对照组术后谵妄发生率明显降低[34]。在一项应用高碳酸血症对行支气管镜检查患者的认知功能的影响的研究中也显示,对两组患者术前和术后7天分别进行MMSE和MoCA检测,与术前评分相比,高碳血症组术后7天MMSE和MoCA评分显著升高,同时,与对照组相比,高碳酸血症组的MoCA评分明显升高[35],这表明一定程度的高碳酸血症对于认知功能是有益处的。此外,在一项接受胸腔镜食管癌根治术的老年患者的研究中发现,术中使用允许性高碳酸血症通气策略(PaCO2维持在46~55 mmHg)与术后谵妄发生率降低相关[36]

此外,有研究曾在小鼠脑组织缺血再灌注模型中证明PaCO2浓度适当的增高(PaCO2: 60~100 mmHg)可以增加脑组织供氧,改善脑氧代谢,起到神经保护作用[37]

6. 允许性高碳酸血症(PHC)减少术后认知功能障碍的作用机制

6.1. 神经炎症学说

手术与麻醉过程会引发全身炎症反应,致使机体释放各类炎症介质,进而引发连锁反应,最终导致中枢神经系统炎症[38]。而允许高碳酸血症可以通过多种途径抑制炎症反应。允许性高碳酸血症可通过抑制核因子(NF-κB)的激活途径发挥抗炎作用[39]。NF-κB是一种关键的炎症转录因子,可被多种因素激活,包括内毒素、活性氧以及细胞因子(如IL-1β和TNF-α)等。NF-κB激活后,细胞内外的反馈机制会对其激活过程进行调节。其中,细胞因子IL-1β和TNF-α可提供细胞外的正反馈调节,进一步加重NF-κB介导的炎症反应[40],然而,高碳酸血症可通过多种机制抑制NF-κB的激活来减轻炎症反应:一方面,可以通过抑制IκB-α的降解来阻断NF-κB的激活;另一方面,促进非典型NF-κB成分RelB的激活,而RelB主要发挥抗炎和免疫抑制作用。在此过程中,炎症因子IL-1β、IL-6、IL-8和TNF-α的产生也会受到抑制[29]。此外,高碳酸血症还可通过阻止p65易位(p65/RELA是典型NF-κB通路的关键转录因子)来抑制NF-κB的激活[41],从而可能减少术后认知功能障碍的发生。

6.2. 血脑屏障

血脑屏障对于术后认知功能障碍的发生也有一定的推动作用。血脑屏障(Blood-brain barrier,BBB)是一个复杂的动态调节界面,由脑微血管内皮细胞及其细胞间紧密连接、完整的基膜、周细胞以及星型胶质细胞脚板围成的神经胶质膜构成[42]。一项基础研究表明,手术和麻醉均可降低组成血脑屏障的紧密连接蛋白的水平,这种紧密连接蛋白的减少可能是由于IL-6增加所引起的[43],而允许性高碳酸血症可以减少炎症因子IL-6的释放[29]

在另一项基础试验中表明高碳酸血症(PaCO2水平为80~100 mmHg)可以通过上调PKCε使紧密连接蛋白的表达增强以及脑水肿的减少,从而改善血脑屏障功能及神经元功能改善神经预后[43]。此外,有研究表明暴露于间歇性高碳酸血症可以减少AQP4蛋白的表达从而降低血脑屏障的通透性,发挥神经保护的作用[44]。S100-β是中枢神经系统损伤的特异性生物学标志蛋白,血液中S100-β升高被认为是星形胶质细胞激活或损伤以及血脑屏障损伤的标志,S100-β的增加已在许多神经系统疾病中得到证实[17],而神经元特异性烯醇化酶(NSE)也是一种与脑损伤相关的生物标志物。在一项轻度高碳酸血症作用于心脏骤停后患者的研究中表示,心脏骤停后患者血清NSE随着时间的推移逐渐升高,但轻度高碳酸血症组较对照组明显降低,而轻度高碳酸血症组S100-β浓度随时间降低,但对照组并没有降低,而较低的NSE和S100-β与有利的结果相关[45]

6.3. 脑灌注及脑代谢

高碳酸血症可以使小动脉扩张来降低脑血管阻力,增加脑血流量[46]。有研究曾在小鼠模型中证明CO2浓度适当的增高(PaCO2: 60~100 mmHg)可以起到神经保护作用,这种保护可能与细胞凋亡的调节蛋白有关[37]。还有研究表明术中使用允许性高碳酸血症的患者相较常规通气的患者脑氧饱和度(rSO2)显著升高,允许性高碳酸血症通气策略可以使脑血管扩张,增加脑血流量和脑氧供应,从而降低脑缺血缺氧的风险,有效保护脑功能[33],允许性高碳酸血症通气策略增加了PaCO2,催化了神经元一氧化氮合酶的活性,而增加一氧化氮的生成,可以使脑血管扩张,增加脑血流量和脑氧供应,从而降低脑缺血缺氧的风险,有效保护脑功能[33],减少了术后认知功能障碍的发生。

此外,在一项允许性高碳酸血症改善心脏瓣膜置换术患者早期认知功能的研究中提示,高碳酸血症可降低细胞内pH值,通过增加腺苷和三磷酸腺苷的浓度来促进葡萄糖的氧化利用,维持脑组织中能量的储备,从而保护大脑,降低POCD的发生率[33]。此外,允许性高碳酸血症可以伴随一定程度的酸中毒,而一定程度的酸中毒能够降低血红蛋白对氧的亲和力,从而促进氧向组织释放(即玻尔效应),进而增加脑组织的氧供应[36]

6.4. 神经递质及氧化应激

脑内神经递质水平异常被认为是POCD发生的另一个重要病理生理基础,包括乙酰胆碱、多巴胺、褪黑激素代谢异常等等,神经递质和酶合成都依赖于充足的氧供,而脑组织发生缺血和缺氧会对中枢神经递质的含量和功能产生影响[47],但允许性高碳酸血症可以扩张脑血管,增加脑组织供氧。乙酰胆碱的合成和释放与氧供有关,缺氧会降低机体内乙酰胆碱的水平,特别是在基底前脑胆碱能中心,而乙酰胆碱水平与神经功能紊乱有关[48]。高碳酸血症还会影响兴奋性氨基酸神经递质的释放,Vannucci等[49]研究显示暴露于高碳酸血症条件下的小鼠脑脊液中谷氨酸的浓度低于低碳酸血症和正常碳酸血症条件下的大鼠,这表明高碳酸血症可能通过抑制谷氨酸分泌到突触间隙、减少N-甲基-D-天冬氨酸受体的激活和减轻自由基引起的损害来保护中枢神经系统[43]。中等浓度的CO2 (PaCO2: 60~100 mmHg)可刺激抗氧化活性,相关实验表明,高碳酸血症可以通过上调细胞质超氧化物歧化酶、谷胱甘肽过氧化物酶等抗氧化酶相关基因的表达,从而激活体内的抗氧化系统[50]

7. 允许性高碳酸血症的安全性

但允许性高碳酸血症的治疗作用还有许多问题尚存争议,比如PaCO2的上限及pH的下限,以及允许性高碳酸血症的持续时间等等。在临床实际的运用中,通常PaCO2在35~45 mmHg被认为在正常的生理水平,大于45 mmHg即被认为是高碳酸血症,而目前,对于允许性高碳酸血症并没有一个确切的范围,大多数关于允许性高碳酸血症的研究都将其控制在45~55 mmHg之间,且并不增加患者死亡率[51]。最近的一项关于探究允许性高碳酸血症对胸外科手术患者行单肺通气时肺部氧合及术后肺部并发症的影响的研究表明,肺保护性通气策略下将PaCO2控制在50~60 mmHg范围内的允许性高碳血症不仅可以改善胸外科手术患者单肺通气期间的氧合情况,而且术后肺部并发症的发生率和住院时间并不会较对照组增加[52]。此外有多项研究表明,持续的低碳酸血症与患者死亡率增加有明显的相关性[53]。这可能是与过度通气与呼吸机引起的肺损伤,以及后续所引起的一系列炎症反应相关[54]

但是当机体PaCO2超过一定的水平,可能会导致中枢神经系统抑制,最初表现易激惹、头痛、情感淡漠、意识模糊等,随后可进展为扑翼样震颤、肌阵挛性抽搐、谵妄、嗜睡和昏迷等[55]。CO2具有脑血管扩张作用,其可能会增加颅内压(ICP),加重或诱发脑缺血[56],因此对于已经有颅内压升高或有升高倾向的患者(如外伤性颅内血肿、颅内占位性病变、严重高血压),应谨慎使用允许性高碳酸血症;此外高碳酸血症所致酸中毒及高碳酸血症本身都具有负性肌力作用,可抑制心血管系统[57],故未经纠正的低血压或心功能不全患者,应慎用允许性高碳酸血症。

8. 展望

综上所述,麻醉期间应用允许性高碳酸血症对于减少术后认知功能障碍(POCD)的发生具有积极作用。其作为一种非药物干预手段,在气管插管全麻手术患者中易于实施,不仅能发挥肺保护和脑保护作用,还具有较少的不良反应,有望成为预防和治疗POCD的新策略,具有重要的临床应用价值。然而,目前允许性高碳酸血症更多被推荐用于急性肺损伤及急性呼吸窘迫综合征的治疗,其对术后认知功能的影响仍需大量临床研究进一步证实。

NOTES

*通讯作者。

参考文献

[1] Weiser, T.G., Haynes, A.B., Molina, G., Lipsitz, S.R., Esquivel, M.M., Uribe-Leitz, T., et al. (2016) Size and Distribution of the Global Volume of Surgery in 2012. Bulletin of the World Health Organization, 94, 201-209.
https://doi.org/10.2471/blt.15.159293
[2] Etzioni, D.A., Liu, J.H., Maggard, M.A. and Ko, C.Y. (2003) The Aging Population and Its Impact on the Surgery Workforce. Annals of Surgery, 238, 170-177.
https://doi.org/10.1097/01.sla.0000081085.98792.3d
[3] Zhao, Q., Wan, H., Pan, H. and Xu, Y. (2024) Postoperative Cognitive Dysfunction—Current Research Progress. Frontiers in Behavioral Neuroscience, 18, Article ID: 1328790.
https://doi.org/10.3389/fnbeh.2024.1328790
[4] Needham, M.J., Webb, C.E. and Bryden, D.C. (2017) Postoperative Cognitive Dysfunction and Dementia: What We Need to Know and Do. British Journal of Anaesthesia, 119, i115-i125.
https://doi.org/10.1093/bja/aex354
[5] Yang, X., Huang, X., Li, M., Jiang, Y. and Zhang, H. (2022) Identification of Individuals at Risk for Postoperative Cognitive Dysfunction (POCD). Therapeutic Advances in Neurological Disorders, 15.
[6] Travica, N., Lotfaliany, M., Marriott, A., Safavynia, S.A., Lane, M.M., Gray, L., et al. (2023) Peri-Operative Risk Factors Associated with Post-Operative Cognitive Dysfunction (POCD): An Umbrella Review of Meta-Analyses of Observational Studies. Journal of Clinical Medicine, 12, Article No. 1610.
https://doi.org/10.3390/jcm12041610
[7] Liu, Y., Yang, W., Xue, J., Chen, J., Liu, S., Zhang, S., et al. (2023) Neuroinflammation: The Central Enabler of Postoperative Cognitive Dysfunction. Biomedicine & Pharmacotherapy, 167, Article ID: 115582.
https://doi.org/10.1016/j.biopha.2023.115582
[8] Wang, C., Chen, W., Zhang, Y., Lin, S. and He, H. (2021) Update on the Mechanism and Treatment of Sevoflurane-Induced Postoperative Cognitive Dysfunction. Frontiers in Aging Neuroscience, 13, Article ID: 702231.
https://doi.org/10.3389/fnagi.2021.702231
[9] Alam, A., Hana, Z., Jin, Z., Suen, K.C. and Ma, D. (2018) Surgery, Neuroinflammation and Cognitive Impairment. EBioMedicine, 37, 547-556.
https://doi.org/10.1016/j.ebiom.2018.10.021
[10] Jin, H., Li, M., Jeong, E., Castro-Martinez, F. and Zuker, C.S. (2024) A Body-Brain Circuit That Regulates Body Inflammatory Responses. Nature, 630, 695-703.
https://doi.org/10.1038/s41586-024-07469-y
[11] Ma, G., Chen, C., Jiang, H., Qiu, Y., Li, Y., Li, X., et al. (2017) Ribonuclease Attenuates Hepatic Ischemia Reperfusion Induced Cognitive Impairment through the Inhibition of Inflammatory Cytokines in Aged Mice. Biomedicine & Pharmacotherapy, 90, 62-68.
https://doi.org/10.1016/j.biopha.2017.02.094
[12] Leal, G., Comprido, D. and Duarte, C.B. (2014) BDNF-Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology, 76, 639-656.
https://doi.org/10.1016/j.neuropharm.2013.04.005
[13] Sierra, A., Beccari, S., Diaz-Aparicio, I., Encinas, J.M., Comeau, S. and Tremblay, M. (2014) Surveillance, Phagocytosis, and Inflammation: How Never-Resting Microglia Influence Adult Hippocampal Neurogenesis. Neural Plasticity, 2014, Article ID: 610343.
https://doi.org/10.1155/2014/610343
[14] Wang, B., Li, S., Cao, X., Dou, X., Li, J., Wang, L., et al. (2018) Blood-Brain Barrier Disruption Leads to Postoperative Cognitive Dysfunction. Current Neurovascular Research, 14, 359-367.
https://doi.org/10.2174/1567202614666171009105825
[15] Qiu, Y., Mo, C., Xu, S., Chen, L., Ye, W., Kang, Y., et al. (2023) Research Progress on Perioperative Blood-Brain Barrier Damage and Its Potential Mechanism. Frontiers in Cell and Developmental Biology, 11, Article ID: 1174043.
https://doi.org/10.3389/fcell.2023.1174043
[16] Safavynia, S.A. and Goldstein, P.A. (2019) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article No. 752.
https://doi.org/10.3389/fpsyt.2018.00752
[17] Taylor, J., Parker, M., Casey, C.P., Tanabe, S., Kunkel, D., Rivera, C., et al. (2022) Postoperative Delirium and Changes in the Blood-Brain Barrier, Neuroinflammation, and Cerebrospinal Fluid Lactate: A Prospective Cohort Study. British Journal of Anaesthesia, 129, 219-230.
https://doi.org/10.1016/j.bja.2022.01.005
[18] Dilmen, O.K., Meco, B.C., Evered, L.A. and Radtke, F.M. (2024) Postoperative Neurocognitive Disorders: A Clinical Guide. Journal of Clinical Anesthesia, 92, Article ID: 111320.
https://doi.org/10.1016/j.jclinane.2023.111320
[19] Lin, X., Chen, Y., Zhang, P., Chen, G., Zhou, Y. and Yu, X. (2020) The Potential Mechanism of Postoperative Cognitive Dysfunction in Older People. Experimental Gerontology, 130, Article ID: 110791.
https://doi.org/10.1016/j.exger.2019.110791
[20] Andersen, J.V. and Schousboe, A. (2022) Glial Glutamine Homeostasis in Health and Disease. Neurochemical Research, 48, 1100-1128.
https://doi.org/10.1007/s11064-022-03771-1
[21] He, L., Duan, X., Li, S., Zhang, R., Dai, X. and Lu, M. (2024) Unveiling the Role of Astrocytes in Postoperative Cognitive Dysfunction. Ageing Research Reviews, 95, Article ID: 102223.
https://doi.org/10.1016/j.arr.2024.102223
[22] Netto, M.B., de Oliveira Junior, A.N., Goldim, M., Mathias, K., Fileti, M.E., da Rosa, N., et al. (2018) Oxidative Stress and Mitochondrial Dysfunction Contributes to Postoperative Cognitive Dysfunction in Elderly Rats. Brain, Behavior, and Immunity, 73, 661-669.
https://doi.org/10.1016/j.bbi.2018.07.016
[23] Kong, H., Xu, L. and Wang, D. (2022) Perioperative Neurocognitive Disorders: A Narrative Review Focusing on Diagnosis, Prevention, and Treatment. CNS Neuroscience & Therapeutics, 28, 1147-1167.
https://doi.org/10.1111/cns.13873
[24] Zeng, K., Long, J., Li, Y. and Hu, J. (2023) Preventing Postoperative Cognitive Dysfunction Using Anesthetic Drugs in Elderly Patients Undergoing Noncardiac Surgery: A Systematic Review and Meta-Analysis. International Journal of Surgery, 109, 21-31.
https://doi.org/10.1097/js9.0000000000000001
[25] Deng, M., Wang, Y. and Zheng, B. (2024) Advances in the Use of Dexmedetomidine for Postoperative Cognitive Dysfunction. Anesthesiology and Perioperative Science, 2, Article No. 38.
https://doi.org/10.1007/s44254-024-00078-y
[26] Yang, Y., Zhao, X., Gao, L., Wang, Y. and Wang, J. (2020) Incidence and Associated Factors of Delirium after Orthopedic Surgery in Elderly Patients: A Systematic Review and Meta-Analysis. Aging Clinical and Experimental Research, 33, 1493-1506.
https://doi.org/10.1007/s40520-020-01674-1
[27] Curley, G.F., Laffey, J.G. and Kavanagh, B.P. (2013) Crosstalk Proposal: There Is Added Benefit to Providing Permissive Hypercapnia in the Treatment of Ards. The Journal of Physiology, 591, 2763-2765.
https://doi.org/10.1113/jphysiol.2013.252601
[28] Hickling, K.G., Henderson, S.J. and Jackson, R. (1990) Low Mortality Associated with Low Volume Pressure Limited Ventilation with Permissive Hypercapnia in Severe Adult Respiratory Distress Syndrome. Intensive Care Medicine, 16, 372-377.
https://doi.org/10.1007/bf01735174
[29] Contreras, M., Masterson, C. and Laffey, J.G. (2015) Permissive Hypercapnia. Current Opinion in Anaesthesiology, 28, 26-37.
https://doi.org/10.1097/aco.0000000000000151
[30] Xi, Y., Jia, X., Wei, X. and Zhou, Q. (2024) Progress on the Effects of Permissive Hypercapnia on the CNS during the Intraoperative Period: A Narrative Review. Cureus, 16, e68087.
https://doi.org/10.7759/cureus.68087
[31] Ahrens, E., Tartler, T.M., Suleiman, A., Wachtendorf, L.J., Ma, H., Chen, G., et al. (2023) Dose-Dependent Relationship between Intra-Procedural Hypoxaemia or Hypocapnia and Postoperative Delirium in Older Patients. British Journal of Anaesthesia, 130, e298-e306.
https://doi.org/10.1016/j.bja.2022.08.032
[32] Gao, W., Liu, D., Li, D. and Cui, G. (2015) Effect of Therapeutic Hypercapnia on Inflammatory Responses to One-Lung Ventilation in Lobectomy Patients. Anesthesiology, 122, 1235-1252.
https://doi.org/10.1097/aln.0000000000000627
[33] Zhu, L., Shi, H., Zhu, C., Liu, H., Su, Z. and Zhao, Y. (2020) Impact of Permissive Hypercapnia on Regional Cerebral Oxygen Saturation and Postoperative Cognitive Function in Patients Undergoing Cardiac Valve Replacement. Annals of Palliative Medicine, 9, 4066-4073.
https://doi.org/10.21037/apm-20-2090
[34] Wong, C., Churilov, L., Cowie, D., Tan, C.O., Hu, R., Tremewen, D., et al. (2020) Randomised Controlled Trial to Investigate the Relationship between Mild Hypercapnia and Cerebral Oxygen Saturation in Patients Undergoing Major Surgery. BMJ Open, 10, e029159.
https://doi.org/10.1136/bmjopen-2019-029159
[35] Cheng, Q., Li, L., Lin, D., Li, R., Yue, Y., Wei, H., et al. (2019) Effects of Acute Hypercapnia on Cognitive Function in Patients Undergoing Bronchoscope Intervention. Journal of Thoracic Disease, 11, 1065-1071.
https://doi.org/10.21037/jtd.2018.12.15
[36] Song, J., Shao, Y., Zhang, G., Fan, B., Tao, W., Liu, X., et al. (2024) Examining the Impact of Permissibility Hypercapnia on Postoperative Delirium among Elderly Patients Undergoing Thoracoscopic-Laparoscopic Esophagectomy: A Single-Center Investigative Study. Shock, 62, 319-326.
https://doi.org/10.1097/shk.0000000000002400
[37] Zhou, Q., Cao, B., Niu, L., Cui, X., Yu, H., Liu, J., et al. (2010) Effects of Permissive Hypercapnia on Transient Global Cerebral Ischemia-Reperfusion Injury in Rats. Anesthesiology, 112, 288-297.
https://doi.org/10.1097/aln.0b013e3181ca8257
[38] Yang, T., Velagapudi, R. and Terrando, N. (2020) Neuroinflammation after Surgery: From Mechanisms to Therapeutic Targets. Nature Immunology, 21, 1319-1326.
https://doi.org/10.1038/s41590-020-00812-1
[39] Ijland, M.M., Heunks, L.M. and van der Hoeven, J.G. (2010) Bench-to-Bedside Review: Hypercapnic Acidosis in Lung Injury—From “Permissive” to “Therapeutic”. Critical Care, 14, Article No. 137.
https://doi.org/10.1186/cc9238
[40] O’Toole, D., Hassett, P., Contreras, M., Higgins, B.D., McKeown, S.T.W., McAuley, D.F., et al. (2009) Hypercapnic Acidosis Attenuates Pulmonary Epithelial Wound Repair by an NF-B Dependent Mechanism. Thorax, 64, 976-982.
https://doi.org/10.1136/thx.2008.110304
[41] Morales-Quinteros, L., Camprubí-Rimblas, M., Bringué, J., Bos, L.D., Schultz, M.J. and Artigas, A. (2019) The Role of Hypercapnia in Acute Respiratory Failure. Intensive Care Medicine Experimental, 7, Article No. 39.
https://doi.org/10.1186/s40635-019-0239-0
[42] Gao, Q. and Hernandes, M.S. (2021) Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation, 44, 2143-2150.
https://doi.org/10.1007/s10753-021-01501-3
[43] Yang, W., Wang, Q., Chi, L., Wang, Y., Cao, H. and Li, W. (2019) Therapeutic Hypercapnia Reduces Blood-Brain Barrier Damage Possibly via Protein Kinase Cε in Rats with Lateral Fluid Percussion Injury. Journal of Neuroinflammation, 16, Article No. 36.
https://doi.org/10.1186/s12974-019-1427-2
[44] Tregub, P.P., Kulikov, V.P., Ibrahimli, I., Tregub, O.F., Volodkin, A.V., Ignatyuk, M.A., et al. (2024) Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. International Journal of Molecular Sciences, 25, Article No. 3665.
https://doi.org/10.3390/ijms25073665
[45] Eastwood, G.M., Schneider, A.G., Suzuki, S., Peck, L., Young, H., Tanaka, A., et al. (2016) Targeted Therapeutic Mild Hypercapnia after Cardiac Arrest: A Phase II Multi-Centre Randomised Controlled Trial (the CCC Trial). Resuscitation, 104, 83-90.
https://doi.org/10.1016/j.resuscitation.2016.03.023
[46] Meng, L. and Gelb, A.W. (2015) Regulation of Cerebral Autoregulation by Carbon Dioxide. Anesthesiology, 122, 196-205.
https://doi.org/10.1097/aln.0000000000000506
[47] Kumar, G.K. (2011) Hypoxia. 3. Hypoxia and Neurotransmitter Synthesis. American Journal of Physiology-Cell Physiology, 300, C743-C751.
https://doi.org/10.1152/ajpcell.00019.2011
[48] Androsova, G., Krause, R., Winterer, G. and Schneider, R. (2015) Biomarkers of Postoperative Delirium and Cognitive Dysfunction. Frontiers in Aging Neuroscience, 7, Article No. 112.
https://doi.org/10.3389/fnagi.2015.00112
[49] Vannucci, R.C., Brucklacher, R.M. and Vannucci, S.J. (1997) Effect of Carbon Dioxide on Cerebral Metabolism during Hypoxia-Ischemia in the Immature Rat. Pediatric Research, 42, 24-29.
https://doi.org/10.1203/00006450-199707000-00005
[50] Kniffin, C.D., Burnett, L.E. and Burnett, K.G. (2014) Recovery from Hypoxia and Hypercapnic Hypoxia: Impacts on the Transcription of Key Antioxidants in the Shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 170, 43-49.
https://doi.org/10.1016/j.cbpb.2014.01.006
[51] Ozawa, Y., Miyake, F. and Isayama, T. (2022) Efficacy and Safety of Permissive Hypercapnia in Preterm Infants: A Systematic Review. Pediatric Pulmonology, 57, 2603-2613.
https://doi.org/10.1002/ppul.26108
[52] Joe, Y., Lee, C.Y., Kim, N., Lee, K., Kang, S.J. and Oh, Y.J. (2023) Effect of Permissive Hypercarbia on Lung Oxygenation during One-Lung Ventilation and Postoperative Pulmonary Complications in Patients Undergoing Thoracic Surgery. European Journal of Anaesthesiology, 40, 691-698.
https://doi.org/10.1097/eja.0000000000001873
[53] Nassar, B. (2022) Should We Be Permissive with Hypercapnia? Annals of the American Thoracic Society, 19, 165-166.
https://doi.org/10.1513/annalsats.202108-997ed
[54] Madotto, F., Rezoagli, E., McNicholas, B.A., Pham, T., Slutsky, A.S., Bellani, G., et al. (2020) Patterns and Impact of Arterial CO2 Management in Patients with Acute Respiratory Distress Syndrome. Chest, 158, 1967-1982.
https://doi.org/10.1016/j.chest.2020.05.605
[55] Palmer, B.F. and Clegg, D.J. (2023) Respiratory Acidosis and Respiratory Alkalosis: Core Curriculum 2023. American Journal of Kidney Diseases, 82, 347-359.
https://doi.org/10.1053/j.ajkd.2023.02.004
[56] Godoy, D.A., Rovegno, M., Lazaridis, C. and Badenes, R. (2021) The Effects of Arterial CO2 on the Injured Brain: Two Faces of the Same Coin. Journal of Critical Care, 61, 207-215.
https://doi.org/10.1016/j.jcrc.2020.10.028
[57] Almanza-Hurtado, A., Polanco Guerra, C., Martínez-Ávila, M.C., Borré-Naranjo, D., Rodríguez-Yanez, T. and Dueñas-Castell, C. (2022) Hypercapnia from Physiology to Practice. International Journal of Clinical Practice, 2022, Article ID: 2635616.
https://doi.org/10.1155/2022/2635616

Baidu
map