脂代谢与肝生长因子:孟德尔随机化研究
Lipid Metabolism and Hepatic Growth Factors: A Mendelian Randomization Study
摘要: 背景:脂代谢异常与多种肝脏疾病的关系备受关注。研究表明,脂质代谢异常通常与肝脏的储备功能降低有关。肝生长因子对于肝脏的生长和修复至关重要,然而,当前的研究尚未明确证实脂代谢水平异常与肝生长因子功能衰退之间的直接因果联系。在肝脏疾病的研究中,总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和甘油三酯(TG)等脂质代谢指标扮演着关键角色。方法:本研究利用全基因组关联研究(GWAS)数据,旨在深入探讨甘油三酯、总胆固醇、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)与肝生长因子(HGF)之间的关系。我们将遗传变异作为工具变量,通过孟德尔随机化(MR)方法评估胆固醇水平与肝生长因子之间的因果关系。本研究选择逆方差加权(IVW)方法作为主要的分析工具。我们采用了MR-Egger回归、关联性分析和连锁不平衡检测等方法。还进行了F检验,水平多效性和异质性等检测。结果:随机效应IVW结果为TC-HGF:比值比(OR) = 0.887,95%置信区间(CI) = [0.795, 0.991],P = 0.034,LDL-C-HGF:比值比(OR) = 0.862,95%置信区间(CI) = [0.771, 0.964],P = 0.009,证明TC和HGF之间存在负相关,且我们发现是LDL-C和HGF存在负相关。结论:本研究结果显示,基因预测的较高胆固醇水平,特别是低密度脂蛋白胆固醇(LDL-C),与肝生长因子(HGF)风险间存在负向关系。
Abstract: Background: The relationship between abnormal lipid metabolism and various liver diseases has attracted much attention. Studies have shown that abnormal lipid metabolism is usually related to the decrease of liver reserve function. Liver growth factor is very important for the growth and repair of liver, 4, 5. However, the current research has not clearly confirmed the direct causal relationship between abnormal lipid metabolism level and the decline of liver growth factor function. In the study of liver diseases, lipid metabolism indexes such as total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG) play a key role. Method: In this study, genome-wide association studies (GWAS) data 7 was used to explore the relationship between triglyceride, total cholesterol, low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) and liver growth factor (HGF). We used genetic variation as a tool variable to evaluate the causal relationship between cholesterol level and liver growth factor by Mendelian randomization (MR). In this study, the inverse variance weighted (IVW) method is selected as the main analysis tool. We used MR-Egger regression, correlation analysis and linkage disequilibrium detection. F test, horizontal pleiotropy and heterogeneity were also carried out. Result: The result of random effect IVW is TC-HGF: odds ratio (OR) = 0.887, 95% confidence interval (CI) = [0.795, 0.991], P = 0.034, LDL-C-HGF: odds ratio (OR) = 0.862, 95% confidence interval (CI) = [0.771, 0.964], P = 0.009, which proves that there is a negative correlation between TC and HGF, and we find that LDL-C and HGF have a negative correlation. Conclusion: The results of this study showed that the higher cholesterol level predicted by genes, especially low density lipoprotein cholesterol (LDL-C), was negatively correlated with the risk of liver growth factor (HGF).
文章引用:钟文卿, 韩冰. 脂代谢与肝生长因子:孟德尔随机化研究[J]. 临床医学进展, 2025, 15(4): 1294-1301. https://doi.org/10.12677/acm.2025.1541057

1. 简介

脂代谢通常与多种肝脏疾病的发展有关[1] [2]。研究表明,脂质代谢影响肝脏的储备功能[3] [4]。在肝脏的生长和修复中,肝生长因子扮演重要的作用[5] [6],然而,脂代谢水平异常与肝生长因子功能之间的关系存在研究空白。

HGF (肝细胞生长因子)在肝脏再生和修复中扮演着至关重要的角色,主要由肝星状细胞产生[7]。其水平在肝脏损伤时显著增加,起到促进肝细胞增殖和修复的作用[8]。虽然HGF也可以由其他细胞产生,如内皮细胞和巨噬细胞[9],但肝星状细胞仍然是其主要来源[10]。在肝脏疾病的不同阶段,HGF水平可能会发生变化。在肝纤维化早期,肝星状细胞的增加和激活可能导致HGF水平升高,而在晚期阶段,如肝硬化,肝星状细胞的数量减少或功能受损可能导致HGF水平下降[11] [12]

脂代谢紊乱与肝健康的关系复杂而密切。尽管脂代谢紊乱本身不直接导致肝星状细胞数量下降,但它可能引发非酒精性脂肪肝病(NAFLD)和非酒精性脂肪性肝炎(NASH)等疾病[13],从而影响肝星状细胞的功能和活性[14]。脂肪的沉积可能导致部分肝星状细胞的减少或功能受损,从而影响HGF的产生,引发其水平下降[15]。为了探究脂代谢异常与HGF之间的因果关系,我们利用脂代谢相关基因的遗传变异作为工具变量,评估了脂代谢异常对HGF风险的潜在影响。

2. 方法

2.1. 研究设计

图示了本研究的总体设计。由于我们使用了已发表研究的汇总统计数据,因此我们并未获得任何额外的伦理批准。在Mendelian Randomization (MR)分析中,存在三个关键的假设:

(1) 暴露与工具变量(IV)密切相关;

(2) 暴露和结果之间的混杂因素不应影响工具变量;

(3) 暴露是调节工具变量与结果关联的唯一因素[16] (见图1)。

这些假设是确保MR分析有效性和可靠性的基础[17]

Figure 1. Overall flow chart

1. 整体流程图

2.2. 脂代谢和HGF的数据源

在孟德尔随机化(Mendelian Randomization, MR)研究中,单核苷酸多态性(SNP)是基因组中最常见的遗传变异形式,指的是基因组序列中核苷酸的改变。在孟德尔随机化中,SNP作为工具变量,用于评估某个暴露因素(如生活方式、环境因素或生物标志物)与特定健康结果(如疾病)之间的因果关系。

本研究采用了2013年GLGC (Global Lipids Genetics Consortium)的数据,该数据涵盖了187,365名混合人口,包含了2,446,982个SNP。GLGC的数据包括了总胆固醇、甘油三酯、低密度脂蛋白胆固醇和高密度脂蛋白胆固醇等脂代谢指标。结局因素是基于欧洲数据集prot-a-1334,样本量为3301,包含了10,534,735个SNP。我们采用了基于广义线性混合模型(GLMM)的方法(fastGWA-GLMM),对结果进行了协变量的调整。此外,我们使用了全基因组显著性阈值(p < 5 × 108),以避免选择假阳性的工具变量。在进行连锁不平衡处理时,通过剔除特定的SNP后,选择具有最低p值的SNP进行保留。

2.3. 统计分析

我们利用F统计量进行评估,其计算公式为F = R^2(nk − 1)/k(1 − R^2),其中R^2代表仪器解释方差的比例,n表示样本量,k表示选择的自变量数量。为了避免研究中潜在的仪器偏差,本研究中,F统计量超过10的IV被认为是有意义的[18]

为了确定因果关系,我们选取在p < 1 × 108表现出关联的SNP进行MR分析的工具。然后,利用TwoSampleMR包,选择连锁不平衡[LD] r^2 < 0.001的独立SNP。

2.4. 孟德尔随机化

逆方差加权(IVW)是本研究主要的分析方法[19]。为了确定SNP的异质性,采用了Cochrane’s Q检验[20]。测量定向多效性的指标来源于MR-Egger回归获得的截距,其中p值小于0.05被认为是显著的。此外,为了测试离群SNP,采用了MR-PRESSO方法。通过“留一法”分析,每次排除一个SNP,以测试结果的稳定性。本研究使用R软件包TwoSampleMR (版本0.5.6)和MRPRESSO (版本1.0)进行分析。

3. 结果

研究结果显示,高胆固醇与HGF呈负向关系。我们首先使用留一法展示结果,进一步采用IVW方法发现,较高的总胆固醇水平与HGF的减少相关(OR = 0.887, 95% CI = 0.795~0.991, p = 0.034) (见图2)。此外,较高的低密度脂蛋白胆固醇水平也与HGF的减少相关(OR = 0.862, 95% CI = 0.771~0.964, p = 0.009)。总胆固醇中的低密度脂蛋白胆固醇(LDL-C)与HGF之间存在负向关系(见图3),表明低密度脂蛋白胆固醇可能是导致HGF减少的主要因素。

Figure 2. The diagram of the relationship between TC, LDL-C, HDL-C, TG and HGF

2. TC、LDL-C、HDL-C、TG与HGF的关系示意图

Figure 3. The forest plot of TC and LDL-C vs. HGF

3. TC、LDL-C与HGF的森林图

MR-Egger Intercept未检测到LDL-C的潜在水平多效性(所有p值 > 0.05),并且LDL-C没有明显的异质性(所有p值 > 0.05)。通过留一法进行敏感性分析证明,个别研究对结果没有显著影响。此外,使用IVW方法确定甘油三酯和高密度脂蛋白与HGF风险之间没有提示性关联。MR-PRESSO方法的结果显示,没有明显的异质性和多效性,总体而言,我们发现低密度脂蛋白胆固醇在脂代谢异常与HGF之间可能发挥的关键作用。

4. 讨论

HGF作为一种重要的细胞因子,在肝脏再生和修复中发挥关键作用[21],因此对于临床医生和研究人员而言,其研究变得越来越引人关注。同时,脂代谢异常作为研究焦点,也引起了广泛的关注。脂代谢异常已被发现与多种疾病,尤其是非酒精性脂肪性肝病(NAFLD)的风险增加密切相关[22]。大量研究已经揭示了脂代谢异常与NAFLD之间的联系[23],人们意识到脂代谢与肝脏健康的关系。而脂肪物质的过度积聚可能导致肝脏炎症或功能异常,进而引发HGF水平下降或肝储备功能降低,带来潜在的危险[24] [25]

而我们的研究中,通过对gwas中数据集的分析[26],我们判断胆固醇水平和HGF存在关联。本研究进一步拓展了这一领域,通过Mendelian Randomization (MR)方法[27],揭示了胆固醇与HGF之间存在负相关。通过IVW、MR-Egger、MR-PRESSO等方法[28] [29],研究结果显示,低密度脂蛋白胆固醇(LDL-C)与HGF呈负相关,即LDL-C水平升高可能导致HGF水平下降。

肝脏在一些损伤情况下,如肿瘤患者进行肝切除手术后,会产生HGF反应,从而导致HGF上调[4] [30],而胆固醇的蓄积可能导致HGF的活性的下降[31],从而影响患者手术后的恢复,这为临床实践提供了重要的启示,对于脂代谢异常患者,尤其是总胆固醇和低密度脂蛋白增高的患者,在进行肝脏手术时需要更加谨慎地评估和考虑各种情况,以提高患者的术后恢复情况和减少出血、感染等并发症的发生。但是也有部分证据表明,HGF的研究结果也可能会导致原发性肝癌患者的肿瘤转移[32]。在本研究中,为进一步探讨胆固醇水平与HGF之间的生物学机制提供了基础。然而,仍需要更多的实验和临床研究来 确认这一关系。

在指出研究的临床应用意义的同时,在本研究中也存在问题,例如HGF数据集样本较少。这是一个常见的挑战,尤其是对于高成本的生物标志物的测量。然而,值得欣慰的是,我们的研究在分析中并没有发现异质性和多效性,这增加了研究结果的可靠性。

此外,在未来的研究我们需要进行更深入的实验研究,以探索脂代谢异常对HGF的具体生物学机制的影响。通过深入挖掘这些机制,我们可以更好地理解异常胆固醇水平如何影响HGF的调控,并进一步探索这种影响与临床后果之间的关联。这将为未来的临床实践提供更为具体、精准的指导,有助于个性化医学的发展。

值得注意的是,未来的研究应该着重于揭示潜在的因果关系,以更深入地解析不同脂代谢指标对HGF的影响。这不仅需要大规模的临床数据支持,还需要细致入微的实验设计和分析方法,以确保研究结果的可靠性和科学性。

对于临床医生而言,本研究结果提示早期脂代谢指标的检查可能成为评估肝脏储备功能的一项可行手段。通过检测患者血脂水平,尤其是血胆固醇的水平,医生可以更早地预测患者的HGF水平,为及时干预提供有力支持。总体而言,这项MR研究为未来深入探讨脂代谢异常与HGF之间关系提供了有力的基础,为个性化医学和癌症预防治疗方面的进一步研究指明了方向。

5. 结论

本研究采用孟德尔随机化(MR)方法,利用遗传变异作为工具变量,首次建立了血脂异常与肝细胞中肝细胞生长因子(HGF)功能下降之间的因果关系。

NOTES

*通讯作者。

参考文献

[1] Anwar, S.D., Foster, C. and Ashraf, A. (2023) Lipid Disorders and Metabolic-Associated Fatty Liver Disease. Endocrinology and Metabolism Clinics of North America, 52, 445-457.
https://doi.org/10.1016/j.ecl.2023.01.003
[2] Eslam, M., El-Serag, H.B., Francque, S., Sarin, S.K., Wei, L., Bugianesi, E., et al. (2022) Metabolic (Dysfunction)-Associated Fatty Liver Disease in Individuals of Normal Weight. Nature Reviews Gastroenterology & Hepatology, 19, 638-651.
https://doi.org/10.1038/s41575-022-00635-5
[3] Wu, T., Ye, J., Shao, C., Li, F., Lin, Y., Ma, Q., et al. (2021) Varied Relationship of Lipid and Lipoprotein Profiles to Liver Fat Content in Phenotypes of Metabolic Associated Fatty Liver Disease. Frontiers in Endocrinology, 12, Article 691556.
https://doi.org/10.3389/fendo.2021.691556
[4] Kathak, R.R., Sumon, A.H., Molla, N.H., Hasan, M., Miah, R., Tuba, H.R., et al. (2022) The Association between Elevated Lipid Profile and Liver Enzymes: A Study on Bangladeshi Adults. Scientific Reports, 12, Article No. 1711.
https://doi.org/10.1038/s41598-022-05766-y
[5] Zhao, Y., Ye, W., Wang, Y. and Chen, W. (2022) HGF/c-Met: A Key Promoter in Liver Regeneration. Frontiers in Pharmacology, 13, Article 808855.
https://doi.org/10.3389/fphar.2022.808855
[6] Michalopoulos, G.K. and Bhushan, B. (2021) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55.
https://doi.org/10.1038/s41575-020-0342-4
[7] Campana, L., Esser, H., Huch, M. and Forbes, S. (2021) Liver Regeneration and Inflammation: From Fundamental Science to Clinical Applications. Nature Reviews Molecular Cell Biology, 22, 608-624.
https://doi.org/10.1038/s41580-021-00373-7
[8] Deng, Y., Zhao, Z., Sheldon, M., Zhao, Y., Teng, H., Martinez, C., Zhang, J., Lin, C., Sun, Y., Yao, F., Zhu, H. and Ma, L. (2023) LIFR Recruits HGF-Producing Neutrophils to Promote Liver Injury Repair and Regeneration. BioRxiv: The Preprint Server for Biology.
https://doi.org/10.1101/2023.03.18.533289
[9] Choi, W., Lee, J., Lee, J., Lee, S.H. and Kim, S. (2019) Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Frontiers in Physiology, 10, Article 914.
https://doi.org/10.3389/fphys.2019.00914
[10] Yu, G., Jing, Y., Kou, X., Ye, F., Gao, L., Fan, Q., et al. (2013) Hepatic Stellate Cells Secreted Hepatocyte Growth Factor Contributes to the Chemoresistance of Hepatocellular Carcinoma. PLOS ONE, 8, e73312.
https://doi.org/10.1371/journal.pone.0073312
[11] Karabulut, S., Tas, F., Akyüz, F., Ormeci, A.C., Serilmez, M., Soydinç, H.O., et al. (2014) Clinical Significance of Serum Hepatocyte Growth Factor (HGF) Levels in Hepatocellular Carcinoma. Tumor Biology, 35, 2327-2333.
https://doi.org/10.1007/s13277-013-1308-8
[12] Shiota, G., Okano, J., Kawasaki, H., Kawamoto, T. and Nakamura, T. (1995) Serum Hepatocyte Growth Factor Levels in Liver Diseases: Clinical Implications. Hepatology, 21, 106-112.
https://doi.org/10.1002/hep.1840210119
[13] Martin, A., Lang, S., Goeser, T., Demir, M., Steffen, H. and Kasper, P. (2022) Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Current Atherosclerosis Reports, 24, 533-546.
https://doi.org/10.1007/s11883-022-01028-4
[14] Lai, X., Li, C., Xiang, C., Pan, Z., Zhang, K., Wang, L., et al. (2022) Generation of Functionally Competent Hepatic Stellate Cells from Human Stem Cells to Model Liver Fibrosis in Vitro. Stem Cell Reports, 17, 2531-2547.
https://doi.org/10.1016/j.stemcr.2022.09.010
[15] Wiering, L., Subramanian, P. and Hammerich, L. (2023) Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 15, 1277-1292.
https://doi.org/10.1016/j.jcmgh.2023.02.010
[16] Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265.
https://doi.org/10.1681/asn.2016010098
[17] Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601.
https://doi.org/10.1136/bmj.k601
[18] Pierce, B.L., Ahsan, H. and VanderWeele, T.J. (2011) Power and Instrument Strength Requirements for Mendelian Randomization Studies Using Multiple Genetic Variants. International Journal of Epidemiology, 40, 740-752.
https://doi.org/10.1093/ije/dyq151
[19] Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[20] Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698.
https://doi.org/10.1038/s41588-018-0099-7
[21] Rizvi, F., Everton, E., Smith, A.R., Liu, H., Osota, E., Beattie, M., et al. (2021) Murine Liver Repair via Transient Activation of Regenerative Pathways in Hepatocytes Using Lipid Nanoparticle-Complexed Nucleoside-Modified mRNA. Nature Communications, 12, Article No. 613.
https://doi.org/10.1038/s41467-021-20903-3
[22] Masoodi, M., Gastaldelli, A., Hyötyläinen, T., Arretxe, E., Alonso, C., Gaggini, M., et al. (2021) Metabolomics and Lipidomics in NAFLD: Biomarkers and Non-Invasive Diagnostic Tests. Nature Reviews Gastroenterology & Hepatology, 18, 835-856.
https://doi.org/10.1038/s41575-021-00502-9
[23] Mato, J.M., Alonso, C., Noureddin, M. and Lu, S.C. (2019) Biomarkers and Subtypes of Deranged Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 25, 3009-3020.
https://doi.org/10.3748/wjg.v25.i24.3009
[24] Geng, Y., Faber, K.N., de Meijer, V.E., Blokzijl, H. and Moshage, H. (2021) How Does Hepatic Lipid Accumulation Lead to Lipotoxicity in Non-Alcoholic Fatty Liver Disease? Hepatology International, 15, 21-35.
https://doi.org/10.1007/s12072-020-10121-2
[25] Gluchowski, N.L., Becuwe, M., Walther, T.C. and Farese, R.V. (2017) Lipid Droplets and Liver Disease: From Basic Biology to Clinical Implications. Nature Reviews Gastroenterology & Hepatology, 14, 343-355.
https://doi.org/10.1038/nrgastro.2017.32
[26] Beck, T., Rowlands, T., Shorter, T. and Brookes, A.J. (2023) GWAS Central: An Expanding Resource for Finding and Visualising Genotype and Phenotype Data from Genome-Wide Association Studies. Nucleic Acids Research, 51, D986-D993.
https://doi.org/10.1093/nar/gkac1017
[27] Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389.
https://doi.org/10.1007/s10654-017-0255-x
[28] Liang, Z., Zhang, Z., Tan, X. and Zeng, P. (2023) Lipids, Cholesterols, Statins and Liver Cancer: A Mendelian Randomization Study. Frontiers in Oncology, 13, Article 1251873.
https://doi.org/10.3389/fonc.2023.1251873
[29] Burgess, S., Foley, C.N., Allara, E., Staley, J.R. and Howson, J.M.M. (2020) A Robust and Efficient Method for Mendelian Randomization with Hundreds of Genetic Variants. Nature Communications, 11, Article No. 376.
https://doi.org/10.1038/s41467-019-14156-4
[30] Murtha-Lemekhova, A., Fuchs, J., Ghamarnejad, O., Nikdad, M., Probst, P. and Hoffmann, K. (2021) Influence of Cytokines, Circulating Markers and Growth Factors on Liver Regeneration and Post-Hepatectomy Liver Failure: A Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 13739.
https://doi.org/10.1038/s41598-021-92888-4
[31] Jing, Y., Sun, Q., Xiong, X., Meng, R., Tang, S., Cao, S., et al. (2019) Hepatocyte Growth Factor Alleviates Hepatic Insulin Resistance and Lipid Accumulation in High‐Fat Diet‐Fed Mice. Journal of Diabetes Investigation, 10, 251-260.
https://doi.org/10.1111/jdi.12904
[32] Liu, W., Jing, Y., Yu, G., Chen, H., Han, Z., Yu, D., et al. (2016) Hepatic Stellate Cell Promoted Hepatoma Cell Invasion via the HGF/c-Met Signaling Pathway Regulated by P53. Cell Cycle, 15, 886-894.
https://doi.org/10.1080/15384101.2016.1152428

Baidu
map