[1] |
Anwar, S.D., Foster, C. and Ashraf, A. (2023) Lipid Disorders and Metabolic-Associated Fatty Liver Disease. Endocrinology and Metabolism Clinics of North America, 52, 445-457. https://doi.org/10.1016/j.ecl.2023.01.003 |
[2] |
Eslam, M., El-Serag, H.B., Francque, S., Sarin, S.K., Wei, L., Bugianesi, E., et al. (2022) Metabolic (Dysfunction)-Associated Fatty Liver Disease in Individuals of Normal Weight. Nature Reviews Gastroenterology & Hepatology, 19, 638-651. https://doi.org/10.1038/s41575-022-00635-5 |
[3] |
Wu, T., Ye, J., Shao, C., Li, F., Lin, Y., Ma, Q., et al. (2021) Varied Relationship of Lipid and Lipoprotein Profiles to Liver Fat Content in Phenotypes of Metabolic Associated Fatty Liver Disease. Frontiers in Endocrinology, 12, Article 691556. https://doi.org/10.3389/fendo.2021.691556 |
[4] |
Kathak, R.R., Sumon, A.H., Molla, N.H., Hasan, M., Miah, R., Tuba, H.R., et al. (2022) The Association between Elevated Lipid Profile and Liver Enzymes: A Study on Bangladeshi Adults. Scientific Reports, 12, Article No. 1711. https://doi.org/10.1038/s41598-022-05766-y |
[5] |
Zhao, Y., Ye, W., Wang, Y. and Chen, W. (2022) HGF/c-Met: A Key Promoter in Liver Regeneration. Frontiers in Pharmacology, 13, Article 808855. https://doi.org/10.3389/fphar.2022.808855 |
[6] |
Michalopoulos, G.K. and Bhushan, B. (2021) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55. https://doi.org/10.1038/s41575-020-0342-4 |
[7] |
Campana, L., Esser, H., Huch, M. and Forbes, S. (2021) Liver Regeneration and Inflammation: From Fundamental Science to Clinical Applications. Nature Reviews Molecular Cell Biology, 22, 608-624. https://doi.org/10.1038/s41580-021-00373-7 |
[8] |
Deng, Y., Zhao, Z., Sheldon, M., Zhao, Y., Teng, H., Martinez, C., Zhang, J., Lin, C., Sun, Y., Yao, F., Zhu, H. and Ma, L. (2023) LIFR Recruits HGF-Producing Neutrophils to Promote Liver Injury Repair and Regeneration. BioRxiv: The Preprint Server for Biology. https://doi.org/10.1101/2023.03.18.533289 |
[9] |
Choi, W., Lee, J., Lee, J., Lee, S.H. and Kim, S. (2019) Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Frontiers in Physiology, 10, Article 914. https://doi.org/10.3389/fphys.2019.00914 |
[10] |
Yu, G., Jing, Y., Kou, X., Ye, F., Gao, L., Fan, Q., et al. (2013) Hepatic Stellate Cells Secreted Hepatocyte Growth Factor Contributes to the Chemoresistance of Hepatocellular Carcinoma. PLOS ONE, 8, e73312. https://doi.org/10.1371/journal.pone.0073312 |
[11] |
Karabulut, S., Tas, F., Akyüz, F., Ormeci, A.C., Serilmez, M., Soydinç, H.O., et al. (2014) Clinical Significance of Serum Hepatocyte Growth Factor (HGF) Levels in Hepatocellular Carcinoma. Tumor Biology, 35, 2327-2333. https://doi.org/10.1007/s13277-013-1308-8 |
[12] |
Shiota, G., Okano, J., Kawasaki, H., Kawamoto, T. and Nakamura, T. (1995) Serum Hepatocyte Growth Factor Levels in Liver Diseases: Clinical Implications. Hepatology, 21, 106-112. https://doi.org/10.1002/hep.1840210119 |
[13] |
Martin, A., Lang, S., Goeser, T., Demir, M., Steffen, H. and Kasper, P. (2022) Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Current Atherosclerosis Reports, 24, 533-546. https://doi.org/10.1007/s11883-022-01028-4 |
[14] |
Lai, X., Li, C., Xiang, C., Pan, Z., Zhang, K., Wang, L., et al. (2022) Generation of Functionally Competent Hepatic Stellate Cells from Human Stem Cells to Model Liver Fibrosis in Vitro. Stem Cell Reports, 17, 2531-2547. https://doi.org/10.1016/j.stemcr.2022.09.010 |
[15] |
Wiering, L., Subramanian, P. and Hammerich, L. (2023) Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 15, 1277-1292. https://doi.org/10.1016/j.jcmgh.2023.02.010 |
[16] |
Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265. https://doi.org/10.1681/asn.2016010098 |
[17] |
Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601. https://doi.org/10.1136/bmj.k601 |
[18] |
Pierce, B.L., Ahsan, H. and VanderWeele, T.J. (2011) Power and Instrument Strength Requirements for Mendelian Randomization Studies Using Multiple Genetic Variants. International Journal of Epidemiology, 40, 740-752. https://doi.org/10.1093/ije/dyq151 |
[19] |
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. https://doi.org/10.1093/ije/dyv080 |
[20] |
Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. https://doi.org/10.1038/s41588-018-0099-7 |
[21] |
Rizvi, F., Everton, E., Smith, A.R., Liu, H., Osota, E., Beattie, M., et al. (2021) Murine Liver Repair via Transient Activation of Regenerative Pathways in Hepatocytes Using Lipid Nanoparticle-Complexed Nucleoside-Modified mRNA. Nature Communications, 12, Article No. 613. https://doi.org/10.1038/s41467-021-20903-3 |
[22] |
Masoodi, M., Gastaldelli, A., Hyötyläinen, T., Arretxe, E., Alonso, C., Gaggini, M., et al. (2021) Metabolomics and Lipidomics in NAFLD: Biomarkers and Non-Invasive Diagnostic Tests. Nature Reviews Gastroenterology & Hepatology, 18, 835-856. https://doi.org/10.1038/s41575-021-00502-9 |
[23] |
Mato, J.M., Alonso, C., Noureddin, M. and Lu, S.C. (2019) Biomarkers and Subtypes of Deranged Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 25, 3009-3020. https://doi.org/10.3748/wjg.v25.i24.3009 |
[24] |
Geng, Y., Faber, K.N., de Meijer, V.E., Blokzijl, H. and Moshage, H. (2021) How Does Hepatic Lipid Accumulation Lead to Lipotoxicity in Non-Alcoholic Fatty Liver Disease? Hepatology International, 15, 21-35. https://doi.org/10.1007/s12072-020-10121-2 |
[25] |
Gluchowski, N.L., Becuwe, M., Walther, T.C. and Farese, R.V. (2017) Lipid Droplets and Liver Disease: From Basic Biology to Clinical Implications. Nature Reviews Gastroenterology & Hepatology, 14, 343-355. https://doi.org/10.1038/nrgastro.2017.32 |
[26] |
Beck, T., Rowlands, T., Shorter, T. and Brookes, A.J. (2023) GWAS Central: An Expanding Resource for Finding and Visualising Genotype and Phenotype Data from Genome-Wide Association Studies. Nucleic Acids Research, 51, D986-D993. https://doi.org/10.1093/nar/gkac1017 |
[27] |
Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389. https://doi.org/10.1007/s10654-017-0255-x |
[28] |
Liang, Z., Zhang, Z., Tan, X. and Zeng, P. (2023) Lipids, Cholesterols, Statins and Liver Cancer: A Mendelian Randomization Study. Frontiers in Oncology, 13, Article 1251873. https://doi.org/10.3389/fonc.2023.1251873 |
[29] |
Burgess, S., Foley, C.N., Allara, E., Staley, J.R. and Howson, J.M.M. (2020) A Robust and Efficient Method for Mendelian Randomization with Hundreds of Genetic Variants. Nature Communications, 11, Article No. 376. https://doi.org/10.1038/s41467-019-14156-4 |
[30] |
Murtha-Lemekhova, A., Fuchs, J., Ghamarnejad, O., Nikdad, M., Probst, P. and Hoffmann, K. (2021) Influence of Cytokines, Circulating Markers and Growth Factors on Liver Regeneration and Post-Hepatectomy Liver Failure: A Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 13739. https://doi.org/10.1038/s41598-021-92888-4 |
[31] |
Jing, Y., Sun, Q., Xiong, X., Meng, R., Tang, S., Cao, S., et al. (2019) Hepatocyte Growth Factor Alleviates Hepatic Insulin Resistance and Lipid Accumulation in High‐Fat Diet‐Fed Mice. Journal of Diabetes Investigation, 10, 251-260. https://doi.org/10.1111/jdi.12904 |
[32] |
Liu, W., Jing, Y., Yu, G., Chen, H., Han, Z., Yu, D., et al. (2016) Hepatic Stellate Cell Promoted Hepatoma Cell Invasion via the HGF/c-Met Signaling Pathway Regulated by P53. Cell Cycle, 15, 886-894. https://doi.org/10.1080/15384101.2016.1152428 |