苯磺酸瑞马唑仑或丙泊酚复合阿芬太尼对老年患者内镜下逆行胰胆管造影术后谵妄及安全性的比较
Comparative Study on Postoperative Delirium and Safety Profiles of Remimazolam Besylate or Propofol Combined with Alfentanil in Elderly Patients Undergoing Endoscopic Retrograde Cholangiopancreatography
DOI: 10.12677/jcpm.2025.42269, PDF, HTML, XML,   
作者: 桑 爽, 陈忠华:绍兴文理学院医学院,浙江 绍兴;绍兴市人民医院麻醉科,浙江 绍兴;刘淑云, 安满丽:绍兴市人民医院麻醉科,浙江 绍兴
关键词: 瑞马唑仑丙泊酚内镜下逆行性胰胆管造影术后谵妄Remimazolam Propofol Endoscopic Retrograde Cholangiopancreatography Postoperative Delirium
摘要: 目的:比较苯磺酸瑞马唑仑或丙泊酚复合阿芬太尼对老年患者内镜下逆行胰胆管造影术(Endoscopic Retrograde Cholangiopancreatography, ERCP)术后谵妄(Postoperative Delirium, POD)及安全性的影响。方法:选择2023年4月至2024年1月我院行无痛ERCP的70岁以上老年患者90例为研究对象,使用随机数字表法将患者分为瑞马唑仑组(n = 45)和丙泊酚组(n = 45)。瑞马唑仑组患者予以苯磺酸瑞马唑仑复合阿芬太尼麻醉,丙泊酚组患者予以丙泊酚复合阿芬太尼麻醉。主要比较两组患者拔管后30 min、术后1天POD发生率。次要比较两组患者麻醉前、麻醉诱导后1 min (T0)、置镜时(T1)、十二指肠扩张时(T2)、手术结束时(T3)和苏醒时(T4)的心率、平均动脉压(MAP)及麻黄碱、甲氧明、去甲肾上腺素等升压药用量;比较两组患者入睡时间、停药至唤醒所需时间(改良警觉/镇静评分,MOAA/S评分 ≥ 3分);比较两组患者麻醉相关并发症情况(包括低血压、低氧、注射痛等)。结果:两组患者拔管后30 min、术后1天POD发生率差异无统计学意义(P > 0.05)。T0、T1、T3时,瑞马唑仑组MAP高于丙泊酚组(P < 0.05);两组患者HR比较差异未见统计学意义(P > 0.05);瑞马唑仑组麻黄碱、甲氧明、去甲肾上腺素的用量少于丙泊酚组(P < 0.05);瑞马唑仑组入睡时间明显长于丙泊酚组(P < 0.05),苏醒时间无差异。瑞马唑仑组低血压和注射痛的发生率低于丙泊酚组(P < 0.05)。结论:苯磺酸瑞马唑仑不增加老年患者ERCP术后谵妄的发生,并且与丙泊酚相比,使用瑞马唑仑麻醉的患者术中血流动力学更平稳,血管活性药使用量更低,是老年患者ERCP手术中镇静较为安全的一种替代选择,但其优势需更进一步研究。
Abstract: Objective: To compare the effects of remimazolam besylate or propofol combined with alfentanil on postoperative delirium (POD) and safety in elderly patients undergoing endoscopic retrograde cholangiopancreatography (ERCP). Methods: A total of 90 elderly patients aged over 70 years who underwent painless ERCP in our hospital from April 2023 to January 2024 were selected as the study subjects. Using a random number table, the patients were divided into a remimazolam group (n = 45) and a propofol group (n = 45). The remimazolam group received remimazolam besylate combined with alfentanil for anesthesia, while the propofol group received propofol combined with alfentanil. The primary outcomes were the incidence of POD at 30 minutes after extubation and on postoperative day 1. Secondary outcomes included heart rate (HR), mean arterial pressure (MAP), and the dosage of vasopressors (ephedrine, methoxamine, and norepinephrine) at different time points: before anesthesia (baseline), 1 minute after induction (T0), during endoscope insertion (T1), during duodenal dilation (T2), at the end of surgery (T3), and upon awakening (T4). Additionally, the time to fall asleep, time from drug discontinuation to awakening (modified Observer’s Assessment of Alertness/Sedation [MOAA/S] score ≥ 3), and anesthesia-related complications (including hypotension, hypoxia, injection pain, etc.) were compared between the two groups. Results: There was no statistically significant difference in the incidence of POD at 30 minutes after extubation or on postoperative day 1 between the two groups (P > 0.05). At T0, T1, and T3, the MAP in the remimazolam group was higher than that in the propofol group (P < 0.05). No significant difference in HR was observed between the two groups (P > 0.05). The remimazolam group required lower doses of ephedrine, methoxamine, and norepinephrine compared to the propofol group (P < 0.05). The time to fall asleep was significantly longer in the remimazolam group (P < 0.05), but there was no difference in awakening time. The incidence of hypotension and injection pain was lower in the remimazolam group (P < 0.05). Conclusion: Remimazolam besylate does not increase the incidence of POD in elderly ERCP patients. Compared with propofol, remimazolam provides more stable intraoperative hemodynamics and reduces the need for vasopressors.
文章引用:桑爽, 刘淑云, 安满丽, 陈忠华. 苯磺酸瑞马唑仑或丙泊酚复合阿芬太尼对老年患者内镜下逆行胰胆管造影术后谵妄及安全性的比较[J]. 临床个性化医学, 2025, 4(2): 995-1002. https://doi.org/10.12677/jcpm.2025.42269

1. 引言

纤维十二指肠镜直视下通过十二指肠乳头将导管插入胆管或胰胆管内进行造影,从而逆行显示胰胆管的一项造影技术称为内镜下逆行胰胆管造影术(ERCP),是诊断和治疗胰胆管疾病的常用技术[1]。由于ERCP技术日益成熟,目前操作越来越复杂,必要时会进行内镜下取石治疗,因此保证充分和安全的镇静是手术过程中的一个重要目标[2]。ERCP手术中无法耐受长时间大手术老年患者居多,老年患者各器官功能储备下降且情况复杂高危,术后谵妄发生率高达10%~50% [3],增加患者术后死亡率和恢复成本。迄今为止对老年患者麻醉最安全、最有效的镇静剂未能达成共识[4],因此选择合理的麻醉用药成为麻醉过程的挑战。丙泊酚或咪达唑仑联合阿片类药物的组合是目前ERCP手术常用的麻醉方案,但咪达唑仑容易产生术后谵妄,而术中低血压、呼吸抑制、低氧则是丙泊酚的主要问题[5] [6]。苯磺酸瑞马唑仑是一种快速起效、快速消除的苯二氮䓬中枢神经系统药物,对血流动力学影响较小,有研究显示对高危患者、老年患者相对更安全[7]-[9]。有研究显示瑞马唑仑意识丧失和拔管的时间比丙泊酚显著延长,但患者总不良事件、心动过缓和呼吸抑制的发生率明显低于接受丙泊酚治疗的人群,且术中低血压发生率明显降低[10] [11]。但关于瑞马唑仑是否会增加老年ERCP患者术后谵妄的研究较少,因此,本研究拟比较丙泊酚或苯磺酸瑞马唑仑联合阿芬太尼用于老年患者ERCP手术,对老年患者术后谵妄的发生及术中安全性的影响,为临床提供参考。

2. 对象与方法

2.1. 研究对象

研究经绍兴市人民医院伦理委员会批准(批件编号:IEC-K-AF-016-1.2),根据纳入和排除标准,选择2023年4月至2024年1月在我院内镜中心行无痛ERCP的70岁以上老年患者90例为研究对象,使用随机数字表法将患者分为瑞马唑仑组(n = 45)和丙泊酚组(n = 45),所有入组患者均签署书面知情同意书。

样本量计算:由于直接比较瑞马唑仑与丙泊酚对ERCP术后POD影响的研究极少,本研究参考既往文献中消化系统手术POD发生率(8.2%~54.4%) [12]及其他手术中瑞马唑仑组(0%~18.6%)与常规麻醉组(16.6%~30.5%)的POD数据[13]-[16]。结合ERCP微创特点和老年患者高风险,保守假设丙泊酚组POD发生率为30%、瑞马唑仑组为7%。通过R语言计算(α = 0.05, β = 0.2),得出每组需42例(共84例),考虑约7%的脱落率,最终纳入90例。

纳入标准:(1) 70岁以上拟择期行无痛ERCP的老年患者,性别不限;(2) 美国麻醉医师协会(ASA)分级I~III级;(3) 术前通过3分钟谵妄诊断量表(3-Minute Diagnostic for Confusion As-sessment Method, 3D-CAM)判断为非谵妄患者。

排除标准:(1) ASA分级 > III级;(2) 存在认知功能障碍或痴呆、严重器官功能障碍;(3) 既往有异常手术麻醉苏醒史;(4) 长期使用可能影响认知功能的药物(如苯二氮䓬药物、抗抑郁药或精神药物、单胺氧化酶抑制剂等);(5) 对研究药物过敏;(6) 预期可能出现困难气道;(7) 急诊ERCP、术中需全身麻醉(非镇静方案)、手术失败或转为开放手术者;(8) 三个月内参与其他药物试验。

2.2. 研究方法

所有患者术前常规禁饮禁食,电解质异常患者改善电解质。入室后患者取俯卧位,头偏向右侧,给予鼻导管吸氧,氧流量2~3 L/min。同时持续监测心率(HR)、心电图(ECG)和外周血氧饱和度(SpO2),每3分钟自动监测一次无创血压(NIBP)。

瑞马唑仑组 静脉缓慢注射阿芬太尼(6 μg/kg)后,推注苯磺酸瑞马唑仑(0.15 mg/kg~0.2 mg/kg) > 60 s至MOAA/S评分为1~2分完成麻醉诱导,静脉泵注苯磺酸瑞马唑0.3~0.6 mg/kg/h和瑞芬太尼1.5~3 μg/kg/h维持麻醉。如果MOAA/S评分高于2分,患者对手术反应过于敏感,静脉给予4 μg/kg阿芬太尼作为额外镇痛剂和0.1 mg/kg推注苯磺酸瑞马唑仑作为额外镇静剂。

丙泊酚组 静脉缓慢注射阿芬太尼(6 μg/kg)后,推注丙泊酚(1 mg/kg~1.5 mg/kg) > 60 s至MOAA/S评分为1~2分完成麻醉诱导,静脉泵注丙泊酚3~5 mg/kg/h和瑞芬太尼1.5~3 μg/kg/h维持麻醉。如果MOAA/S评分高于2分,患者对手术反应过于敏感,则静脉给予4 μg/kg阿芬太尼作为额外镇痛剂和0.5 mg/kg丙泊酚作为额外镇静剂。

两组MOAA/S评分为0~1分时经口放置气管导管至声门上,将氧流量调节至7~8 L/min,调节麻醉机APL阀,将气道压力上限设置为20 cmH2O,术中将MOAA/S评分维持在1~2分之间。术中如果患者SpO2 < 90%,予改变体位、托下颌、增大氧气流量或面罩给氧等处理,处理5分钟后如果SpO2仍 < 90%,则行气管插管并机械通气。术中如果平均动脉压(MAP) < 65 mmHg或较基线下降20%,给予甲氧明或麻黄碱升血压,必要时适量泵注去甲肾上腺素维持血压稳定;如果MAP >105 mmHg或较基线上升20%,给予乌拉地尔或艾司洛尔降血压,必要时适量泵注硝酸甘油维持血压稳定,并记录血管活性药使用情况。患者术后Aldrete评分达9分以上,且没有恶心、呕吐、头晕等明显副作用时转出麻醉后监测治疗室(post-anesthesia care unit, PACU)。

2.3. 观察指标

记录诱导前、诱导后1 min、置镜时、十二指肠扩张时、手术结束时的HR、MAP及麻黄碱、甲氧明、去甲肾上腺素、乌拉地尔、艾司洛尔等血管活性药用量。记录入睡时间、停药至唤醒所需时间(MOAA/S ≥ 3分);记录两组麻醉相关并发症发生情况(包括低血压、低氧、注射痛等)。拔管后30 min在送病房前采用3D-CAM量表对患者进行POD评估;于术后1 d在病房内采用3D-CAM量表对患者进行POD评估。

2.4. 统计学处理

采用SPSS22.0软件进行数据分析,计量资料采用均数 ± 标准差(mean ± standard deviation, ( x ¯ ± s ))或中位数(四分位数间距,M[Q1, Q3])表示,组间比较采用两独立样本t检验或Mann-Whitney U检验;计数资料以频数(百分比,n (%))表示,组间比较采用卡方检验(Chi-square test,χ2检验)或Fisher精确检验(理论频数 < 5时)。当P < 0.05时认为差异具有统计学意义。

3. 研究结果

(1) 两组患者一般资料各指标比较无统计学意义(P > 0.05) (表1)。

(2) 两组患者拔管后30 min和术后1天POD发生率无统计学意义(表2)。

(3) 与丙泊酚组相比,瑞马唑仑组诱导后、置镜时、手术结束和苏醒时血压降低幅度小,麻黄碱、甲氧明、去甲肾上腺素用量少于丙泊酚组(P < 0.05),循环更平稳(表3表4)。

(4) 瑞马唑仑组发生严重低血压和注射痛明显低于丙泊酚组(P < 0.05) (表5)。

(5) 瑞马唑仑组入睡时间明显长于丙泊酚组(P < 0.05) (表6)。

Table 1. Comparison of demographic characteristics and surgical parameters between groups

1. 两组患者一般资料及手术情况比较

组别

ASAII级/III级(n/n)

年龄( x ¯ ± s ,岁)

BMI ( x ¯ ± s , kg/m2)

手术时间( x ¯ ± s , min)

瑞马唑仑组

34/10

82.30 ± 6.29

20.86 ± 2.97

43.07 ± 21.05

丙泊酚组

33/11

80.41 ± 6.80

21.95 ± 2.62

38.14 ± 19.63

P值

0.805

0.180

0.071

0.259

Table 2. Incidence of postoperative delirium (POD) between groups

2. 两组患者POD发生率比较

组别

拔管后30 min

术后1天

瑞马唑仑组

4 (9%)

1 (2%)

丙泊酚组

9 (20%)

2 (4%)

P值

0.133

0.556

Table 3. Mean arterial pressure (MAP) profiles between groups

3. 两组患者MAP比较

组别

MAP (mmHg)

术前

诱导后1 min

置镜时

球囊扩张时

手术结束时

苏醒时

瑞马唑仑组

94.96 ± 12.52

90.45 ± 14.03

87.61 ± 12.62

94.46 ± 15.15

102.02 ± 14.25

100.62 ± 13.59

丙泊酚组

90.97. ± 12.33

80.03 ± 9.20

74.06 ± 11.77

91.79 ± 14.07

88.99 ± 15.12

92.59 ± 13.48

P0

0.135

<0.01

<0.01

0.137

<0.01

0.006

P1

0.08

0.003

0.56

0.57

0.06

P2

<0.01

<0.01

0.75

0.49

0.47

注:P0为组间比较,P1为组内比较(瑞马唑仑组与术前相比),P2为组内比较(丙泊酚组与术前相比)。

Table 4. Dosage of vasoactive drugs administered between groups

4. 两组患者血管活性药物用量比较

组别

麻黄碱(mg)

甲氧明(mg)

去甲肾上腺素(μg/h)

瑞马唑仑组

0.20 ± 0.76

0

42.09 ± 28.74

丙泊酚组

1.30 ± 1.98

0.38 ± 1.09

88.77 ± 18.64

P值

0.001

<0.01

<0.01

Table 5. Postoperative adverse events between groups

5. 两组患者术后不良反应例数比较

组别

低氧血症

低血压

注射痛

瑞马唑仑组

0

5

0

丙泊酚组

2

17

4

P值

0.153

0.003

0.041

Table 6. Induction time and recovery time between groups

6. 两组患者入睡时间和苏醒时间比较

组别

入睡时间(s)

苏醒时间(s)

瑞马唑仑组

40.11 ± 12.96

204.32 ± 158.23

丙泊酚组

33.86 ± 8.95

167.5 ± 116.08

P值

0.010

0.217

4. 讨论

本研究选用相同剂量阿芬太尼镇痛,保证组间的可比性。阿芬太尼是一种短效阿片类镇痛药,其终末半衰期相对较短,作用持续时间是芬太尼的1/3,效力是芬太尼的1/10,起效比芬太尼快4倍[17]。与等效剂量的芬太尼相比,阿芬太尼已被证明可提供血流动力学稳定性并引起较少的呼吸抑制、恶心和呕吐,适合短小手术及内窥镜检查的镇痛[18] [19]

瑞马唑仑作为新型苯二氮䓬类静脉麻醉药,其药理作用机制是通过与γ-氨基丁酸A型受体(γ-aminobutyric acid type A receptor,GABAA受体)上的苯二氮䓬(benzodiazepine, BZD)结合位点高度特异性结合而发挥中枢抑制作用[20]。瑞马唑仑兼具两种现有麻醉药物咪达唑仑和瑞芬太尼的组合特性[21],通过在咪达唑仑的化学结构中引入一个羧酸酯侧基合成的一种新型的超短效镇静/麻醉剂,这种羧酸酯能在体内被迅速分解成非活性代谢物[20]。因此瑞马唑仑具有起效快,清除率高,不受输注时间影响,以及不在体内蓄积等特点[22]-[24]。另外,有研究显示瑞马唑仑对心率、心电图、血压和呼吸频率几乎没有临床影响[25]。静脉推注诱导对血流动力学影响也较小[26],因此比较适合在老年患者内镜检查治疗中应用。

POD是一种急性发作的、暂时性脑功能异常,多数发生在术后1周内,以注意力不集中、意识水平变化和认知功能急性改变为特征。POD可增加患者术后其它并发症发生率、延长住院时间、增加医疗费用和30 d再入院率,从而影响患者预后。老年患者是POD发生的高危人群,高龄是POD发生的独立危险因素,其可能通过手术诱发异常应激反应和神经体液机制参与POD的发生。研究表明,在ICU中使用苯二氮䓬类镇静剂的患者相比使用丙泊酚或者右美托咪定镇静的患者谵妄发生率增加[27] [28],全世界每年有超过2.3亿患者接受外科手术,其中老年患者约占25%,国外对30家医院2万多例老年手术患者(≥65岁)的调研数据显示,POD总体发生率12.0% [29] [30]。另外老年患者术中血流动力学较易波动,易导致脑灌注压过低,这也与POD的风险增加有关[31]

本研究结果显示,瑞马唑仑组术后POD发生率在数值上低于丙泊酚组(拔管后30分钟:9% vs 20%;术后24小时:2% vs 4%),但组间差异无统计学意义(P > 0.05)。可能是因为:ERCP实际POD风险可能低于假设,导致效应量被高估;当前样本量不足,导致对较小差异(如实际检测到的11%)的检测功效不足;潜在的混杂因素(如手术操作时间、具体手术方式等)未完全控制;POD评估方法(如3D-CAM量表)或评估时间点的选择可能存在局限性。此外,MOAA/S评分 < 2分后进行手术操作,瑞马唑仑入睡时间比丙泊酚显著延长,但两组苏醒时间无明显差异。丙泊酚组注射痛及低氧的发生例数多于瑞马唑仑组(表6),这与丙泊酚有显著的呼吸抑制和注射痛有关[32]。两组患者诱导后至置镜时血压均降低,但瑞马唑仑组诱导后、置镜时、手术结束和苏醒时血压降低幅度更小,循环更平稳,低血压事件发生更少(表3表4);且麻黄碱、甲氧明、去甲肾上腺素等升压药物用量明显减少(表5),提示瑞马唑仑复合阿芬太尼更有利于维持老年患者术中呼吸循环平稳,从而减少心血管不良事件的发生。这也可能是瑞马不增加POD发生的因素之一。因此,尽管无统计学差异,但瑞马唑仑组POD发生率减半的趋势仍可能具有临床意义,尤其是对于老年ERCP患者。未来需更大样本量、更严格的标准化研究设计(如年龄分层、精确具体手术方式、优化POD风险评估方法、延长POD监测时间等)来进一步验证瑞马唑仑的潜在获益。

总的来说,该实验提示苯磺酸瑞马唑仑联合阿芬太尼麻醉不增加老年患者ERCP术后POD的发生,与丙泊酚相比,苯磺酸瑞马唑仑具有丙泊酚麻醉的优点,且无注射部位疼痛,对呼吸、循环抑制更小,是老年患者ERCP手术中镇静较为安全的一种替代选择,但其优势需更多高质量等级随机对照实验进一步研究。

参考文献

[1] Derdeyn, J. and Laleman, W. (2018) Current Role of Endoscopic Cholangioscopy. Current Opinion in Gastroenterology, 34, 301-308.
https://doi.org/10.1097/mog.0000000000000457
[2] Baiu, I. and Visser, B. (2018) Endoscopic Retrograde Cholangiopancreatography. JAMA, 320, 2050.
https://doi.org/10.1001/jama.2018.14481
[3] Mattison, M.L.P. (2020) Delirium. Annals of Internal Medicine, 173, ITC49-ITC64.
https://doi.org/10.7326/aitc202010060
[4] Dhaliwal, A. (2021) Choice of Sedation in Endoscopic Retrograde Cholangiopancreatography: Is Monitored Anesthesia Care as Safe as General Anesthesia? A Systematic Review and Meta-Analysis. Annals of Gastroenterology, 34, 1-15.
https://doi.org/10.20524/aog.2021.0650
[5] Memtsoudis, S., Cozowicz, C., Zubizarreta, N., Weinstein, S.M., Liu, J., Kim, D.H., et al. (2019) Risk Factors for Postoperative Delirium in Patients Undergoing Lower Extremity Joint Arthroplasty: A Retrospective Population-Based Cohort Study. Regional Anesthesia & Pain Medicine, 44, 934-943.
https://doi.org/10.1136/rapm-2019-100700
[6] Ogawa, T., Tomoda, T., Kato, H., Akimoto, Y., Tanaka, S. and Okada, H. (2020) Propofol Sedation with a Target-Controlled Infusion Pump in Elderly Patients Undergoing ERCP. Gastrointestinal Endoscopy, 92, 301-307.
https://doi.org/10.1016/j.gie.2020.03.002
[7] Doi, M., Hirata, N., Suzuki, T., Morisaki, H., Morimatsu, H. and Sakamoto, A. (2020) Safety and Efficacy of Remimazolam in Induction and Maintenance of General Anesthesia in High-Risk Surgical Patients (ASA Class III): Results of a Multicenter, Randomized, Double-Blind, Parallel-Group Comparative Trial. Journal of Anesthesia, 34, 491-501.
https://doi.org/10.1007/s00540-020-02776-w
[8] Rex, D.K., Bhandari, R., Lorch, D.G., Meyers, M., Schippers, F. and Bernstein, D. (2021) Safety and Efficacy of Remimazolam in High Risk Colonoscopy: A Randomized Trial. Digestive and Liver Disease, 53, 94-101.
https://doi.org/10.1016/j.dld.2020.10.039
[9] Sneyd, J.R., Gambus, P.L. and Rigby-Jones, A.E. (2021) Current Status of Perioperative Hypnotics, Role of Benzodiazepines, and the Case for Remimazolam: A Narrative Review. British Journal of Anaesthesia, 127, 41-55.
https://doi.org/10.1016/j.bja.2021.03.028
[10] Chen, S., Yuan, T., Zhang, J., Bai, H., Tian, M., Pan, C., et al. (2020) Remimazolam Tosilate in Upper Gastrointestinal Endoscopy: A Multicenter, Randomized, Non‐Inferiority, Phase III Trial. Journal of Gastroenterology and Hepatology, 36, 474-481.
https://doi.org/10.1111/jgh.15188
[11] Chen, S.H., Wang, J., Xu, X.H., et al. (2020) The Efficacy and Safety of Remimazolam Tosylate versus Propofol in Patients Under-Going Colonoscopy: A Multicentered, Randomized, Positive-Controlled, Phase III Clinical Trial. American Journal of Translational Research, 12, 4594-4603.
[12] Scholz, A.F.M., Oldroyd, C., McCarthy, K., Quinn, T.J. and Hewitt, J. (2016) Systematic Review and Meta-Analysis of Risk Factors for Postoperative Delirium among Older Patients Undergoing Gastrointestinal Surgery. Journal of British Surgery, 103, e21-e28.
https://doi.org/10.1002/bjs.10062
[13] Kaneko, S., Morimoto, T., Ichinomiya, T., Murata, H., Yoshitomi, O. and Hara, T. (2022) Effect of Remimazolam on the Incidence of Delirium after Transcatheter Aortic Valve Implantation under General Anesthesia: A Retrospective Exploratory Study. Journal of Anesthesia, 37, 210-218.
https://doi.org/10.1007/s00540-022-03148-2
[14] 张玉娇. 瑞马唑仑和咪达唑仑在腰硬联合麻醉膝关节置换术中镇静效果的比较[D]: [硕士学位论文]. 青岛: 青岛大学, 2021.
[15] 谢柯祺, 何玲, 代艳, 等. 瑞马唑仑对甲状腺相关眼病的眶壁减压术病人术后谵妄、应激反应的影响[J]. 临床外科学, 2022, 30(6): 548-551.
[16] 杜海伟, 李丽伟. 甲苯磺酸瑞马唑仑对妇科日间手术患者术后苏醒质量及谵妄影响研究[J]. 河南外科学杂志, 2022, 28(4): 63-65.
[17] Hemmings, H.C. and Egan, T.D. (2019) Preface to the Second Edition. In: Hemmings Jr., H.C. and Egan, T.D., Eds., Pharmacology and Physiology for Anesthesia, Elsevier, xiii.
https://doi.org/10.1016/b978-0-323-48110-6.00070-3
[18] Langevin, S., Lessard, M.R., Trépanier, C.A. and Baribault, J. (1999) Alfentanil Causes Less Postoperative Nausea and Vomiting than Equipotent Doses of Fentanyl or Sufentanil in Outpatients. Anesthesiology, 91, 1666.
https://doi.org/10.1097/00000542-199912000-00019
[19] Bilgin, H., Başağan Moğol, E., Bekar, A., İşçimen, R. and Korfali, G. (2006) A Comparison of Effects of Alfentanil, Fentanyl, and Remifentanil on Hemodynamic and Respiratory Parameters during Stereotactic Brain Biopsy. Journal of Neurosurgical Anesthesiology, 18, 179-184.
https://doi.org/10.1097/01.ana.0000210998.10410.2e
[20] Kilpatrick, G.J., McIntyre, M.S., Cox, R.F., Stafford, J.A., Pacofsky, G.J., Lovell, G.G., et al. (2007) CNS 7056: A Novel Ultra-Short-Acting Benzodiazepine. Anesthesiology, 107, 60-66.
https://doi.org/10.1097/01.anes.0000267503.85085.c0
[21] Goudra, B. and Singh, P. (2014) Remimazolam: The Future of Its Sedative Potential. Saudi Journal of Anaesthesia, 8, 388-391.
https://doi.org/10.4103/1658-354x.136627
[22] Schüttler, J., Eisenried, A., Lerch, M., Fechner, J., Jeleazcov, C. and Ihmsen, H. (2020) Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers: Part I. Pharmacokinetics and Clinical Pharmacodynamics. Anesthesiology, 132, 636-651.
https://doi.org/10.1097/aln.0000000000003103
[23] Liu, T., Lai, T., Chen, J., Lu, Y., He, F., Chen, Y., et al. (2021) Effect of Remimazolam Induction on Hemodynamics in Patients Undergoing Valve Replacement Surgery: A Randomized, Double‐Blind, Controlled Trial. Pharmacology Research & Perspectives, 9, e00851.
https://doi.org/10.1002/prp2.851
[24] Stöhr, T., Colin, P.J., Ossig, J., Pesic, M., Borkett, K., Winkle, P., et al. (2021) Pharmacokinetic Properties of Remimazolam in Subjects with Hepatic or Renal Impairment. British Journal of Anaesthesia, 127, 415-423.
https://doi.org/10.1016/j.bja.2021.05.027
[25] Antonik, L.J., Goldwater, D.R., Kilpatrick, G.J., Tilbrook, G.S. and Borkett, K.M. (2012) A Placebo-and Midazolam-Controlled Phase I Single Ascending-Dose Study Evaluating the Safety, Pharmacokinetics, and Pharmacodynamics of Remimazolam (CNS 7056): Part I. Safety, Efficacy, and Basic Pharmacokinetics. Anesthesia & Analgesia, 115, 274-283.
https://doi.org/10.1213/ane.0b013e31823f0c28
[26] Zaal, I.J., Devlin, J.W., Hazelbag, M., Klein Klouwenberg, P.M.C., van der Kooi, A.W., Ong, D.S.Y., et al. (2015) Benzodiazepine-Associated Delirium in Critically Ill Adults. Intensive Care Medicine, 41, 2130-2137.
https://doi.org/10.1007/s00134-015-4063-z
[27] Casault, C., Soo, A., Lee, C.H., Couillard, P., Niven, D., Stelfox, T., et al. (2021) Sedation Strategy and ICU Delirium: A Multicentre, Population-Based Propensity Score-Matched Cohort Study. BMJ Open, 11, e045087.
https://doi.org/10.1136/bmjopen-2020-045087
[28] Chae, D., Kim, H., Song, Y., Choi, Y.S. and Han, D.W. (2022) Pharmacodynamic Analysis of Intravenous Bolus Remimazolam for Loss of Consciousness in Patients Undergoing General Anaesthesia: A Randomised, Prospective, Double-Blind Study. British Journal of Anaesthesia, 129, 49-57.
https://doi.org/10.1016/j.bja.2022.02.040
[29] Berian, J.R., Zhou, L., Russell, M.M., Hornor, M.A., Cohen, M.E., Finlayson, E., et al. (2018) Postoperative Delirium as a Target for Surgical Quality Improvement. Annals of Surgery, 268, 93-99.
https://doi.org/10.1097/sla.0000000000002436
[30] Brown, C.H., Probert, J., Healy, R., Parish, M., Nomura, Y., Yamaguchi, A., et al. (2018) Cognitive Decline after Delirium in Patients Undergoing Cardiac Surgery. Anesthesiology, 129, 406-416.
https://doi.org/10.1097/aln.0000000000002253
[31] Hori, D., Brown, C., Ono, M., Rappold, T., Sieber, F., Gottschalk, A., et al. (2014) Arterial Pressure above the Upper Cerebral Autoregulation Limit during Cardiopulmonary Bypass Is Associated with Postoperative Delirium. British Journal of Anaesthesia, 113, 1009-1017.
https://doi.org/10.1093/bja/aeu319
[32] Choi, G.J., Kang, H., Baek, C.W., Jung, Y.H. and Ko, J.S. (2018) Etomidate versus Propofol Sedation for Electrical External Cardioversion: A Meta-Analysis. Current Medical Research and Opinion, 34, 2023-2029.
https://doi.org/10.1080/03007995.2018.1519501

Baidu
map