纳米硅增强植物对外源胁迫耐受性的研究进展
Research Progress on the Effect of Nanosilicon on Enhancing Plant Tolerance to Exogenous Stress
DOI: 10.12677/hjss.2025.132010, PDF, HTML, XML,    科研立项经费支持
作者: 杨 欢:伊犁师范大学微生物资源保护与开发利用重点实验室,新疆 伊宁;金 前*:伊犁师范大学微生物资源保护与开发利用重点实验室,新疆 伊宁;伊犁师范大学生物科学与技术学院,新疆 伊宁
关键词: 纳米硅干旱重金属病虫害Nanosilicon Salt Drought Heavy Metals Pests and Diseases
摘要: 随着人们对粮食产量和品质的需求不断增长,以及农业生产面临土壤盐碱化、病虫害和环境污染等多种外源胁迫的严峻挑战,迫切需要成本效益高、技术方法先进的预防和治理策略。近年来,纳米技术的迅猛发展为农业领域带来了新的治理方法,其中纳米硅因其独特的结构特性和物理化学属性,在农业中的应用日益广泛。为了更深入地理解纳米硅增强植物抵抗各种外源胁迫的机制,本文系统探讨了纳米硅材料在提升植物抗逆性方面的作用,并详细分析了其促进植物生长及增强植物应对生物与非生物胁迫的能力。同时,本文还展望了纳米硅与植物相互作用研究中存在的问题、理论研究的深度以及未来的研究方向,并提出了针对性的建议。这些旨在为农业生产中纳米硅材料的安全高效利用提供实用的参考与指导。
Abstract: As the demand for food production and quality continues to rise, and agriculture faces severe challenges from various exogenous stresses such as soil salinization, pests and diseases and environmental pollution, there is an urgent need for both high-cost and low-cost technical methods for prevention and control. In recent years, with the rapid advancement of nanotechnology, nanosilicon has been widely applied in agriculture due to its unique structural characteristics and physical and chemical properties. To further elaborate on the various physiological, biochemical, and molecular mechanisms by which nanosilicon enhances plant resistance to exogenous stresses, this paper deeply examines the role of nanosilicon materials in improving plant stress resistance. It analyzes how nanosilicon materials promote plant growth and enhance the ability of plants to face both biotic and abiotic stresses. The paper also looks forward to the existing problems in the study of the interaction between nanosilicon and plants, the depth of theoretical research, and the future research direction. It puts forward targeted suggestions, aiming to provide practical reference and guidance for the safe and efficient utilization of nanosilicon materials in agricultural production.
文章引用:杨欢, 金前. 纳米硅增强植物对外源胁迫耐受性的研究进展[J]. 土壤科学, 2025, 13(2): 77-84. https://doi.org/10.12677/hjss.2025.132010

1. 引言

联合国粮食及农业组织(FAO)预测,到2050年,全球人口预计将增长至91亿。为了应对由此带来的粮食需求增加,全球粮食产量预计将需要增长70% [1]。目前,作物生产正面临诸多挑战,包括干旱、极端天气、土壤盐渍化等非生物胁迫,以及病虫害等生物胁迫,这些因素导致作物每年损失巨大。因此,开发绿色技术变得刻不容缓,以强化作物的抗逆能力,从而达成高产稳产与生态平衡的双重目标。纳米粒子(NPs),作为尺寸在1~100纳米之间的超微结构,其表面特性、光学性能和热电性质与常规材料有着显著差异[2]。纳米颗粒由于其独特的生理特性、高比表面积和微小尺寸,能够显著提高在植物体内的溶解和运输效率,二氧化硅纳米颗粒(SiNPs)在水解后主要生成单硅酸(H4SiO4) [5],植物细胞壁通过硅沉积得到强化,从而提升其抗倒伏和抗病能力[3]。硅与SiNPs的协同作用可以激活植物的防御机制,有效减轻由生物和非生物胁迫引起的氧化应激[4] [5]。由于SiNPs的粒径较小,它们能够轻易穿透植物细胞壁和细胞器,与块状材料相比,SiNPs具有更高的表面积与体积比,这增强了它们的反应性和生化活性[6]。研究显示,在玉米中,SiNPs的积累量比块状二氧化硅高出9.14% [7]。因此,SiNPs在应对多种逆境压力时可能比块状二氧化硅更具有优势。

植物在其生长和发育过程中,经常面临来自生物因素(例如细菌、真菌和害虫)和非生物因素(如高盐分环境、干旱、极端低温、高温以及强烈的紫外线辐射等)的多重压力。在漫长的生物进化过程中,植物发展出了独特的适应策略以应对恶劣环境。最近的研究成果表明,纳米硅材料能显著提高植物在极端条件下的存活率。本文回顾了近年来国内外关于纳米硅材料对植物生长发育及其抗逆性影响的研究进展。

2. 提高植物耐盐胁迫

植物在盐胁迫下生长受阻,而SiNPs的施用能有效缓解这一现象。SiNPs的供应通过减少Na+的吸收来减少盐离子对植物的影响[8]。SiNPs通过增加K+的吸收同时减少Na+的含量,来优化细胞质内K+/Na+的比例,从而缓解高浓度Na+带来的毒性效,200 mg/L的最低施用浓度能有效提升盐胁迫下香蕉叶片的叶绿素水平,同时降低Na+积累并促进K+吸收,进而优化K+/Na+比值,减轻细胞壁受损程度[9]。同样,硅元素通过减少叶片细胞膜对Na+的渗透性,导致香蕉叶中Na+浓度下降而K+含量上升,并且硅还能促使Na+和Cl在根部区域分布,从而增强植株对盐胁迫的抵抗力[10]。有研究显示,高浓度NaCl引发的氧化反应加速了脂质过氧化进程,导致电子泄漏(EL)增加及膜稳定指数(MSI)下降,因此EL与MSI指标可有效评估盐胁迫导致的细胞膜受损程度[11]。纳米硅能有效增强蚕豆在盐胁迫条件下的膜稳定性指数(MSI),同时降低电解质渗漏率(EL),通过激活抗氧化酶系统,减少活性氧(ROS)积累,从而提升植物的耐盐性[11]。同时,纳米硅颗粒(SiNPs)通过调节叶片气孔开度,维持正常蒸腾速率,有效缓解过量Na+和Cl对植物的毒害作用[12]。Naguib与Abdalla的研究也证实,SiNPs处理能提升抗氧化酶活性,有效缓解盐胁迫对植物的伤害,促进植物皮层中不规则蜡质沉积,维持叶片叶绿素水平及水分含量,显著改善盐胁迫下的植物生长状况[13] [14]。在盐分胁迫下,植被首先会降低叶片的膨胀度,进而抑制光合作用的效率,Kalteh等人报道,在盐胁迫下,SiNPs的应用增加了罗勒的叶绿素含量和脯氨酸含量[8]。植物通过调节细胞渗透平衡来维持生理稳定,以抵御盐胁迫环境。在胁迫条件下,脯氨酸作为一种重要的渗透调节剂会积累,对维持植物的渗透平衡起着关键作用[15],SiNPs能提升水稻叶片中脯氨酸和游离氨基酸的含量,从而增强其对抗NaCl引起的渗透胁迫的能力,其在盐胁迫期间激活植物中的防御相关酶,以减轻活性氧(ROS)在植物中积累造成的损害[16]。总体而言,SiNPs的使用对植物在盐胁迫下的多种生长指标具有积极影响,包括使植株茎增粗,新叶面积、叶绿素和类胡萝卜素含量增加,矿物质(N、P和K)含量、Ca和Mg含量增加,Na含量降低,可溶性糖与苯酚含量上升,降低脯氨酸和DPPHIC50含量,并显著减少盐分症状。

3. 提高植物抗干旱胁迫

纳米硅能有效缓解干旱对植物的负面影响,改善种子萌发受阻、光合效率下降等问题,维持其生理生化平衡[17]。经过纳米硅预处理的樱桃植株在干旱胁迫下展现出纳米硅的显著益处,不仅提升了受胁迫植株的氮、磷、钾等营养元素含量,还有效缓解了干旱对光合作用效率、气孔传导性以及蒸腾速率等生理参数的负面影响[18]。SiNPs在干旱环境中有效降低草莓与大麦的渗透压,增强细胞渗透调节功能,从而提升组织的水分吸收与保持效率[18]。硅元素可能通过叶片表皮细胞下形成的双层硅质结构来提升扁豆植株的水分利用效率[19]。在干旱胁迫条件下,SiNPs提高了草莓叶片中光合色素的含量,并增加了植物体内对抗旱至关重要的渗透物质含量,如碳水化合物和脯氨酸[20]。水分缺失会促使活性氧(ROS)增多,引发丙二醛(MDA)过量沉积,致使作物受到氧化伤害,SiNPs的施用提升了抗氧化酶活性,有效减少了缺水环境下作物的MDA水平[21]。通常而言,干旱胁迫会显著降低叶片膨压,抑制光合效能,延缓叶片衰老进程。Akhtar等人指出纳米硅和PGPR分别具有显著缓解小麦幼苗干旱的潜力,联合施用显示鲜重和干重增加,叶绿素A、B含量增加,增加气体交换性、营养吸收和渗透压,SOD、POD和CAT活性增加,耐旱性降低[22]。Rai-Kalal等人报道纳米硅能够增加种子发芽、幼苗生长和活力、水分吸收和淀粉酶活性,控制ROS产生与抗氧化酶(如POD、CAT和SOD)活性之间的适当平衡,改进的光合机制,增加活性反应中心的数量,提升生物量产出,减轻干旱胁迫的影响[23]

4. 提高植物抗重金属胁迫

纳米硅可显著减轻重金属对植物的毒性,研究表明其能改善受污染环境中的植物生长,减少重金属对生态系统的损害,并降低对人类健康的危害。例如,纳米硅的应用降低了植物体内的镉浓度,尤其是谷物中的镉浓度,纳米硅通过增强抗氧化酶系统功能,显著降低了镉胁迫下活性氧的生成[24]。有研究发现,小麦在施用纳米硅后,在镉胁迫下小麦的硅转运蛋白的基因表达水平明显上升,小麦植株的硅转运蛋白的表达增加,纳米硅可以通过降低植物中镉的浓度,同时减少过氧化氢、丙二醛和电解质泄漏的产生,提高SOD和过氧化物酶活性,降低了小麦植物的镉毒性和干旱胁迫[25]。此外,纳米硅通过抑制砷/铬在玉米与豌豆中的富集,减轻氧化损伤,促进营养元素吸收并增强抗氧化能力,低了玉米品种和豌豆植物的砷酸盐和铬的毒性[26]。SiNPs可在开花期使水稻的镉含量降低了31.6%至64.9% [27],还能通过增强种子萌发和植株发育来缓解鹰嘴豆的铝毒害[28]。重金属胁迫会触发氧化应激,导致植物体内超氧化物、过氧化氢和羟基自由基等活性氧物质大幅增加,从而对细胞结构、细胞器及其正常功能造成严重损害[29]。纳米硅能够激活植物根系和叶片中的抗氧化防御体系,有效降低活性氧(ROS)的积累[30]。Tripathi等人研究发现,在砷胁迫环境中,使用SiNPs可明显增强玉米叶片中多种重要酶的活性(如超氧化物歧化酶、抗坏血酸过氧化物酶、谷胱甘肽还原酶及脱氢抗坏血酸还原酶) [31]。同时,作为重要抗氧化剂的谷胱甘肽(GSH),在重金属解毒过程中发挥关键作用,其不仅能够清除活性氧,而且还是植物螯合素合成的底物,SiNPs有效提升了谷胱甘肽的含量,从而减轻了水稻受镉毒害的程度[32]。在镉胁迫的条件下,硅与一氧化氮共同发挥作用,通过调节小麦的抗坏血酸-谷胱甘肽代谢途径及相关氧化应激指标,进而激活植物的抗氧化防御体系,同样,SiNPs可提升抗坏血酸-谷胱甘肽循环效能,从而缓解砷酸盐对玉米生长发育的毒害[31]。有机酸与酚类等特定物质能够螯合重金属并消除活性氧,以应对重金属胁迫,SiNPs还能促进根系中有机酸和酚类物质的富集,进而提高玉米对铝毒的耐受性[33]。此外,SiNPs通过促进光合作用、植物生长和硅吸收来减少植物体内的重金属积累并限制重金属胁迫[34]。同时,SiNPs通过调控OsLCT1和OsNramp5等重金属转运相关基因的表达水平,显著抑制了植物对重金属的吸收与富集[35]。经研究验证,叶面施用纳米硅材料能大幅度减少水稻对镉、铅、铜、锌等多种重金属元素的吸收量,有效缓解由重金属胁迫所引发的营养失衡状况,从而进一步促进水稻植株的生长发育,并提升幼苗的生物量积累,纳米硅的施用对水稻的蒸腾活动具有显著的抑制作用,能够降低木质部传导组织的渗透性,有效阻断重金属离子向水稻地上部分的迁移过程。纳米硅能促进植物对营养物质的摄取并增加抗氧化成分的合成,有助于减轻重金属压力导致的氧化伤害,进而增强植物的代谢功能和抗压性能[36]。吴长安等通过实验证实,采用纳米硅进行叶面喷洒可明显降低水稻对砷的摄取量,使其在根部、茎秆及叶片中的砷含量显著下降[37]。相较于传统硅酸盐材料,SiNPs在缓解Cd对水培水稻幼苗的毒害效应方面展现出显著优势,显著增强细胞壁机械强度、高效激活镉解毒基因表达网络、以及更有效地调控氧化应激反应体系[38]。总体而言,SiNPs可以通过降低重金属给植物带来的负面作用,或者通过补偿机制来抵消重金属的胁迫作用。

5. 提高植物抗病虫害胁迫

SiNPs能显著提升植物对生物胁迫的耐受性,主要的作用机制在于促进二氧化硅的生物可利用率,引发角质层增厚及次生细胞壁重构等生理变化,从而形成有效的病原体防御屏障[39]。SiNPs能够增强木质部细胞壁的木质化程度并增加其厚度,这种细胞壁的增厚为植物提供了抵御昆虫侵害的物理屏障[40]。此外,纳米硅在甜菜根中通过抑制病原体的入侵,有效阻止了真菌、细菌及寄生虫的繁殖[41]。SiNPs的施用显著提升了PODs与PPOs酶的活性,有效遏制了玉米晚枯病菌的滋生蔓延,通过增强抗氧化酶、酚类物质及脯氨酸的活性,显著减轻了蚕豆巧克力斑病的危害程度[4]。最新研究证实,SiNPs能够激活拟南芥的防御系统,通过水杨酸介导的途径诱导植物产生系统性抗病性,20~40 nm的纳米硅颗粒相较于传统二氧化硅材料,在玉米植株中展现出更强的抑菌效果[7]。带正电荷的SiNPs与真菌细胞膜蛋白的巯基结合,引发细胞破裂,进而抑制病原体DNA的蛋白表达或引发突变,阻断其复制过程[42]。纳米硅的使用可增强光合效率,促进糖类代谢,提升苯丙氨酸与木质素水平,同时增加脯氨酸和蔗糖含量,膜脂质过氧化和活性氧的生成得到了有效抑制,而豌豆根芽中硅的积累则显著减轻了扫帚菜感染所带来的不良影响[43]。纳米硅处理有效减轻了尖孢镰刀菌导致的西瓜枯萎病,经纳米硅处理的植株中,多种防御相关基因表达量明显提升,包括PR1 (病原相关蛋白1)、PPO (多酚氧化酶558)和PAO (多胺氧化酶)。同时,HMA1 (重金属ATP酶1)和CDS1 (磷酸胞氨酰转移酶1)等代谢相关基因的表达水平也得到增强[44]。纳米硅与西塞罗根瘤菌分别施用可提升受线虫、丝核菌及镰刀菌侵染的鹰嘴豆的生长指标、光合能力及脯氨酸水平,纳米硅与西塞罗红芽孢杆菌协同作用可显著降低黑根腐病指数、湿根腐病发生率及病原菌数量,从而提升防治效果[45]。此外,纳米硅通过增强玉米植株对曲霉菌和镰刀菌的抗性,有效减轻病害程度,其机制主要与酚类物质积累及防御酶活性提升密切相关,纳米硅与壳聚糖复合涂层处理,显著降低了西瓜镰刀菌病害的发生程度,CSD1 (铜锌超氧化物歧化酶1)、MDH (苹果酸脱氢酶)、PAO1 (多胺氧化酶1)、PPO、PR1及RAN1 (重金属转运ATP酶)等关键基因的表达调控,在减轻病害负担及提升作物产量方面,其发挥着至关重要的作用[44]。同时,提升纳米硅肥施用量能有效降低其使用频率,并通过促进水稻茎叶的生长发育,进而增强了作物的抗病性能[46]。总体而言,纳米硅可以作为一种绿色无毒的用于某些作物病虫害的预防,在提高作物的生长发育的同时也预防某些病虫害的发生,其抗病虫害的机制主要为生理生化和分子层面上,通过激活植物防御系统进行病虫害的预防。

6. 总结与展望

近年来,纳米硅材料作为新型农业功能材料,其通过多维度调控植物抗逆性的作用机制已取得突破性进展。研究表明,纳米硅通过根系微界面调控、土壤重金属钝化和植物内源防御系统激活三重协同机制,显著提升植物对生物/非生物胁迫的适应性。在分子层面,纳米硅可诱导SOD、POD等抗氧化酶基因表达上调,并通过表观遗传调控增强胁迫记忆效应[47];在生理层面,其独特的表面羟基化特性使硅纳米颗粒(20~50 nm)在根际形成选择性离子通道,使小麦在干旱条件下水分利用率提升[48];在生态层面,纳米硅通过表面配位作用对Cd2+进行固定,显著降低重金属生物有效性[49]。这种多尺度、跨维度的作用特征使其成为现代农业抗逆调控的重要突破口。然而,该领域研究仍存在三大核心科学问题亟待突破:首先,材料特性–植物响应的构效关系尚未建立。现有研究多局限于粒径单一变量的影响分析,而对表面电荷(Zeta电位)、晶体结构(无定形vs晶体)及表面修饰(氨基化/羧基化)等关键参数的耦合作用机制缺乏系统研究。其次,植物–纳米硅互作的动态过程研究存在技术瓶颈。传统组织切片法难以实时追踪纳米颗粒的跨膜转运过程,对共质体/非共质体运输路径的判定仍依赖间接证据,特别是纳米硅通过胞间连丝进行细胞间转运的分子开关机制尚未阐明。再者,纳米硅的生态安全评估体系亟待完善。现有毒性研究多采用急性暴露实验(≤28天),对亚慢性暴露(作物全生育期)下纳米硅在土壤–微生物–植物系统中的迁移转化规律,及其对根际微生物组的长期影响缺乏系统研究。针对上述挑战,未来研究应聚焦三个创新方向:1) 建立材料特性多参数数据库,运用机器学习算法构建“材料特性–抗逆效应”预测模型,如通过贝叶斯优化筛选出针对不同外在胁迫的最优参数组合;2) 发展多模态原位表征技术,结合同步辐射X射线荧光显微术(μ-XRF)和单粒子追踪技术,解析纳米硅从根际到叶片的动态转运图谱;3) 构建全生命周期风险评估模型,整合代谢组学(如检测硅纳米颗粒诱导的植物代谢指纹变化)和微宇宙实验,建立剂量–效应–时间的三维毒性预测框架。纳米硅技术融入可持续农业体系,将为保障粮食安全和推动绿色农业发展提供创新性的解决方案。

基金项目

2024年伊犁师范大学省级大学生创新创业训练计划(S202410764050)。

NOTES

*通讯作者。

参考文献

[1] Mwobobia, E.G., Sichangi, A.W. and Thiong’o, K.B. (2019) Characterization of Wheat Production Using Earth-Based Observations: A Case Study of Meru County, Kenya. Modeling Earth Systems and Environment, 6, 13-25.
https://doi.org/10.1007/s40808-019-00699-4
[2] Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živčák, M., Ghorbanpour, M., et al. (2019) Application of Silicon Nanoparticles in Agriculture. 3 Biotech, 9, Article No. 90.
https://doi.org/10.1007/s13205-019-1626-7
[3] Ma, J.F. and Yamaji, N. (2008) Functions and Transport of Silicon in Plants. Cellular and Molecular Life Sciences, 65, 3049-3057.
https://doi.org/10.1007/s00018-008-7580-x
[4] El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., et al. (2020) Silica Nanoparticles Enhance Disease Resistance in Arabidopsis Plants. Nature Nanotechnology, 16, 344-353.
https://doi.org/10.1038/s41565-020-00812-0
[5] Zhu, Y. and Gong, H. (2013) Beneficial Effects of Silicon on Salt and Drought Tolerance in Plants. Agronomy for Sustainable Development, 34, 455-472.
https://doi.org/10.1007/s13593-013-0194-1
[6] Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. (2012) Growth and Physiological Responses of Maize (Zea mays L.) to Porous Silica Nanoparticles in Soil. Journal of Nanoparticle Research, 14, Article No. 1294.
https://doi.org/10.1007/s11051-012-1294-6
[7] Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V. and Kannan, N. (2014) Application of Silica Nanoparticles in Maize to Enhance Fungal Resistance. IET Nanobiotechnology, 8, 133-137.
https://doi.org/10.1049/iet-nbt.2013.0004
[8] Kalteh, M., Alipour, Z.T., Ashraf, S., et al. (2014) Effect of Silica Nanoparticles on Basil (Ocimum basilicum) under Salinity Stress. Journal of Chemical Health Risks, 4, 49-55.
[9] Mahmoud, L.M., Dutt, M., Shalan, A.M., El-Kady, M.E., El-Boray, M.S., Shabana, Y.M., et al. (2020) Silicon Nanoparticles Mitigate Oxidative Stress of in vitro-Derived Banana (Musa acuminata ‘Grand Nain’) under Simulated Water Deficit or Salinity Stress. South African Journal of Botany, 132, 155-163.
https://doi.org/10.1016/j.sajb.2020.04.027
[10] Farhangi-Abriz, S. and Torabian, S. (2018) Nano-Silicon Alters Antioxidant Activities of Soybean Seedlings under Salt Toxicity. Protoplasma, 255, 953-962.
https://doi.org/10.1007/s00709-017-1202-0
[11] Qados, A. (2015) Mechanism of Nanosilicon-Mediated Alleviation of Salinity Stress in Faba Bean (Vicia faba L.) Plants. American Journal of Experimental Agriculture, 7, 78-95.
https://doi.org/10.9734/ajea/2015/15110
[12] Haghighi, M. and Pessarakli, M. (2013) Influence of Silicon and Nano-Silicon on Salinity Tolerance of Cherry Tomatoes (Solanum lycopersicum L.) at Early Growth Stage. Scientia Horticulturae, 161, 111-117.
https://doi.org/10.1016/j.scienta.2013.06.034
[13] Avestan, S., Ghasemnezhad, M., Esfahani, M. and Byrt, C.S. (2019) Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants. Agronomy, 9, Article 246.
https://doi.org/10.3390/agronomy9050246
[14] Naguib, D.M. and Abdalla, H. (2019) Metabolic Status during Germination of Nano Silica Primed Zea mays Seeds under Salinity Stress. Journal of Crop Science and Biotechnology, 22, 415-423.
https://doi.org/10.1007/s12892-019-0168-0
[15] Nayyar, H. and Walia, D.P. (2003) Water Stress Induced Proline Accumulation in Contrasting Wheat Genotypes as Affected by Calcium and Abscisic Acid. Biologia plantarum, 46, 275-279.
https://doi.org/10.1023/a:1022867030790
[16] Abdel-Haliem, M.E.F., Hegazy, H.S., Hassan, N.S. and Naguib, D.M. (2017) Effect of Silica Ions and Nano Silica on Rice Plants under Salinity Stress. Ecological Engineering, 99, 282-289.
https://doi.org/10.1016/j.ecoleng.2016.11.060
[17] Ashkavand, P., Tabari, M., Zarafshar, M., Tomášková, I. and Struve, D. (2015) Effect of SiO2 Nanoparticles on Drought Resistance in Hawthorn Seedlings. Forest Research Papers, 76, 350-359.
https://doi.org/10.1515/frp-2015-0034
[18] Ashkavand, P., Zarafshar, M., Tabari, M., Mirzaie, J., Nikpour, A., Bordbar, S.K., et al. (2018) Application of SiO2 Nanoparticles as Pretreatment Alleviates the Impact of Drought on the Physiological Performance of Prunus Mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica, 53, 207-219.
https://doi.org/10.31055/1851.2372.v53.n2.20578
[19] Boaretto, L.F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G.A., Mazzafera, P., et al. (2014) Water Stress Reveals Differential Antioxidant Responses of Tolerant and Non-Tolerant Sugarcane Genotypes. Plant Physiology and Biochemistry, 74, 165-175.
https://doi.org/10.1016/j.plaphy.2013.11.016
[20] Zahedi, S.M., Moharrami, F., Sarikhani, S. and Padervand, M. (2020) Selenium and Silica Nanostructure-Based Recovery of Strawberry Plants Subjected to Drought Stress. Scientific Reports, 10, Article No. 17672.
https://doi.org/10.1038/s41598-020-74273-9
[21] Namjoyan, S., Sorooshzadeh, A., Rajabi, A. and Aghaalikhani, M. (2020) Nano-Silicon Protects Sugar Beet Plants against Water Deficit Stress by Improving the Antioxidant Systems and Compatible Solutes. Acta Physiologiae Plantarum, 42, Article No. 157.
https://doi.org/10.1007/s11738-020-03137-6
[22] Akhtar, N., Ilyas, N., Mashwani, Z., Hayat, R., Yasmin, H., Noureldeen, A., et al. (2021) Synergistic Effects of Plant Growth Promoting Rhizobacteria and Silicon Dioxide Nano-Particles for Amelioration of Drought Stress in Wheat. Plant Physiology and Biochemistry, 166, 160-176.
https://doi.org/10.1016/j.plaphy.2021.05.039
[23] Rai-Kalal, P., Tomar, R.S. and Jajoo, A. (2021) Seed Nanopriming by Silicon Oxide Improves Drought Stress Alleviation Potential in Wheat Plants. Functional Plant Biology, 48, 905-915.
https://doi.org/10.1071/fp21079
[24] Gao, M., Zhou, J., Liu, H., Zhang, W., Hu, Y., Liang, J., et al. (2018) Foliar Spraying with Silicon and Selenium Reduces Cadmium Uptake and Mitigates Cadmium Toxicity in Rice. Science of The Total Environment, 631, 1100-1108.
https://doi.org/10.1016/j.scitotenv.2018.03.047
[25] Khan, Z.S., Rizwan, M., Hafeez, M., Ali, S., Adrees, M., Qayyum, M.F., et al. (2019) Effects of Silicon Nanoparticles on Growth and Physiology of Wheat in Cadmium Contaminated Soil under Different Soil Moisture Levels. Environmental Science and Pollution Research, 27, 4958-4968.
https://doi.org/10.1007/s11356-019-06673-y
[26] Tripathi, D.K., Singh, V.P., Prasad, S.M., Chauhan, D.K. and Dubey, N.K. (2015) Silicon Nanoparticles (SiNp) Alleviate Chromium (VI) Phytotoxicity in Pisum sativum (L.) Seedlings. Plant Physiology and Biochemistry, 96, 189-198.
https://doi.org/10.1016/j.plaphy.2015.07.026
[27] Chen, R., Zhang, C., Zhao, Y., Huang, Y. and Liu, Z. (2017) Foliar Application with Nano-Silicon Reduced Cadmium Accumulation in Grains by Inhibiting Cadmium Translocation in Rice Plants. Environmental Science and Pollution Research, 25, 2361-2368.
https://doi.org/10.1007/s11356-017-0681-z
[28] Chandra, J., Chauhan, R., Korram, J., Satnami, M.L. and Keshavkant, S. (2020) Silica Nanoparticle Minimizes Aluminium Imposed Injuries by Impeding Cytotoxic Agents and over Expressing Protective Genes in Cicer Arietinum. Scientia Horticulturae, 260, Article 108885.
https://doi.org/10.1016/j.scienta.2019.108885
[29] Kim, Y., Khan, A.L., Waqas, M. and Lee, I. (2017) Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Frontiers in Plant Science, 8, Article 510.
https://doi.org/10.3389/fpls.2017.00510
[30] Ali, S., Rizwan, M., Hussain, A., Zia ur Rehman, M., Ali, B., Yousaf, B., et al. (2019) Silicon Nanoparticles Enhanced the Growth and Reduced the Cadmium Accumulation in Grains of Wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 140, 1-8.
https://doi.org/10.1016/j.plaphy.2019.04.041
[31] Tripathi, D.K., Singh, S., Singh, V.P., Prasad, S.M., Chauhan, D.K. and Dubey, N.K. (2016) Silicon Nanoparticles More Efficiently Alleviate Arsenate Toxicity than Silicon in Maize Cultiver and Hybrid Differing in Arsenate Tolerance. Frontiers in Environmental Science, 4, Article 46.
https://doi.org/10.3389/fenvs.2016.00046
[32] Wang, S., Wang, F. and Gao, S. (2014) Foliar Application with Nano-Silicon Alleviates Cd Toxicity in Rice Seedlings. Environmental Science and Pollution Research, 22, 2837-2845.
https://doi.org/10.1007/s11356-014-3525-0
[33] de Sousa, A., Saleh, A.M., Habeeb, T.H., Hassan, Y.M., Zrieq, R., Wadaan, M.A.M., et al. (2019) Silicon Dioxide Nanoparticles Ameliorate the Phytotoxic Hazards of Aluminum in Maize Grown on Acidic Soil. Science of The Total Environment, 693, Article 133636.
https://doi.org/10.1016/j.scitotenv.2019.133636
[34] Cui, J., Liu, T., Li, F., Yi, J., Liu, C. and Yu, H. (2017) Silica Nanoparticles Alleviate Cadmium Toxicity in Rice Cells: Mechanisms and Size Effects. Environmental Pollution, 228, 363-369.
https://doi.org/10.1016/j.envpol.2017.05.014
[35] Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. and Guo, S. (2017) Role of Silicon on Plant-Pathogen Interactions. Frontiers in Plant Science, 8, Article 701.
https://doi.org/10.3389/fpls.2017.00701
[36] 王世华. 叶面喷施纳米硅增强水稻抗重金属毒害机理研究[D]: [博士学位论文]. 南京: 南京农业大学, 2007.
[37] 吴长安. 叶面喷纳米硅对水稻砷吸收的抑制作用研究[J]. 广东化工, 2018, 45(15): 96, 80.
[38] Cui, J., Jin, Q., Li, F. and Chen, L. (2022) Silicon Reduces the Uptake of Cadmium in Hydroponically Grown Rice Seedlings: Why Nanoscale Silica Is More Effective than Silicate. Environmental Science: Nano, 9, 1961-1973.
https://doi.org/10.1039/d1en00973g
[39] Khan, M.R. and Siddiqui, Z.A. (2020) Use of Silicon Dioxide Nanoparticles for the Management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani Disease Complex of Beetroot (Beta vulgaris L.). Scientia Horticulturae, 265, Article 109211.
https://doi.org/10.1016/j.scienta.2020.109211
[40] Reynolds, O.L., Keeping, M.G. and Meyer, J.H. (2009) Silicon‐Augmented Resistance of Plants to Herbivorous Insects: A Review. Annals of Applied Biology, 155, 171-186.
https://doi.org/10.1111/j.1744-7348.2009.00348.x
[41] Hasan, K.A., Soliman, H., Baka, Z. and Shabana, Y.M. (2020) Efficacy of Nano-Silicon in the Control of Chocolate Spot Disease of Vicia faba L. Caused By Botrytis fabae. Egyptian Journal of Basic and Applied Sciences, 7, 53-66.
https://doi.org/10.1080/2314808x.2020.1727627
[42] Nazaralian, S., Majd, A., Irian, S., Najafi, F., Ghahremaninejad, F., Landberg, T., et al. (2017) Comparison of Silicon Nanoparticles and Silicate Treatments in Fenugreek. Plant Physiology and Biochemistry, 115, 25-33.
https://doi.org/10.1016/j.plaphy.2017.03.009
[43] Shabbaj, I.I., Madany, M.M.Y., Tammar, A., Balkhyour, M.A. and AbdElgawad, H. (2021) Silicon Dioxide Nanoparticles Orchestrate Carbon and Nitrogen Metabolism in Pea Seedlings to Cope with Broomrape Infection. Environmental Science: Nano, 8, 1960-1977.
https://doi.org/10.1039/d0en01278e
[44] Buchman, J.T., Elmer, W.H., Ma, C., Landy, K.M., White, J.C. and Haynes, C.L. (2019) Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of Citrullus lanatus (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. ACS Sustainable Chemistry & Engineering, 7, 19649-19659.
https://doi.org/10.1021/acssuschemeng.9b04800
[45] Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V. and Kannan, N. (2014) Foliar Application of Silica Nanoparticles on the Phytochemical Responses of Maize (Zea mays L.) and Its Toxicological Behavior. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44, 1128-1131.
https://doi.org/10.1080/15533174.2013.799197
[46] 刘显峰. 微纳米硅肥在水稻种植上的应用[J]. 特种经济动植物, 2021, 24(9): 112-114.
[47] Fan, N., Zhao, C., Yue, L., Ji, H., Wang, X., Xiao, Z., et al. (2022) Nanosilicon Alters Oxidative Stress and Defence Reactions in Plants: A Meta-Analysis, Mechanism and Perspective. Environmental Science: Nano, 9, 3742-3755.
https://doi.org/10.1039/d2en00478j
[48] Singh, A., Rajput, V., Varshney, A., Sharma, R., Ghazaryan, K., Minkina, T., et al. (2024) Revolutionizing Crop Production: Nanoscale Wonders—Current Applications, Advances, and Future Frontiers. Egyptian Journal of Soil Science, 64, 221-258.
https://doi.org/10.21608/ejss.2023.246354.1684
[49] Chen, M., Liu, J., Kong, Y., Zheng, W., Wang, Y., Zou, X., et al. (2025) Facile Synthesis of Surface-Etched Functionalized Porous Nanosilica Microspheres for the Simultaneous Removal of Cadmium and Malachite Green: Experimental and DFT Studies. Separation and Purification Technology, 353, Article 128585.
https://doi.org/10.1016/j.seppur.2024.128585

Baidu
map