[1] |
Alexander, D.D., Mink, P.J., Adami, H., Cole, P., Mandel, J.S., Oken, M.M., et al. (2007) Multiple Myeloma: A Review of the Epidemiologic Literature. International Journal of Cancer, 120, 40-61. https://doi.org/10.1002/ijc.22718 |
[2] |
Malard, F., Neri, P., Bahlis, N.J., Terpos, E., Moukalled, N., Hungria, V.T.M., et al. (2024) Multiple Myeloma. Nature Reviews Disease Primers, 10, Article No. 45. https://doi.org/10.1038/s41572-024-00529-7 |
[3] |
Giannakoulas, N., Ntanasis-Stathopoulos, I. and Terpos, E. (2021) The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. International Journal of Molecular Sciences, 22, Article 4462. https://doi.org/10.3390/ijms22094462 |
[4] |
Fairfield, H., Falank, C., Avery, L. and Reagan, M.R. (2016) Multiple Myeloma in the Marrow: Pathogenesis and Treatments. Annals of the New York Academy of Sciences, 1364, 32-51. https://doi.org/10.1111/nyas.13038 |
[5] |
Minnie, S.A. and Hill, G.R. (2020) Immunotherapy of Multiple Myeloma. Journal of Clinical Investigation, 130, 1565-1575. https://doi.org/10.1172/jci129205 |
[6] |
Binder, M., Szalat, R.E., Talluri, S., Fulciniti, M., Avet-Loiseau, H., Parmigiani, G., et al. (2024) Bone Marrow Stromal Cells Induce Chromatin Remodeling in Multiple Myeloma Cells Leading to Transcriptional Changes. Nature Communications, 15, Article No. 4139. https://doi.org/10.1038/s41467-024-47793-5 |
[7] |
Schütt, J., Nägler, T., Schenk, T. and Brioli, A. (2021) Investigating the Interplay between Myeloma Cells and Bone Marrow Stromal Cells in the Development of Drug Resistance: Dissecting the Role of Epigenetic Modifications. Cancers, 13, Article 4069. https://doi.org/10.3390/cancers13164069 |
[8] |
Gunes, E.G., Rosen, S.T. and Querfeld, C. (2020) The Role of Myeloid-Derived Suppressor Cells in Hematologic Malignancies. Current Opinion in Oncology, 32, 518-526. https://doi.org/10.1097/cco.0000000000000662 |
[9] |
Hezaveh, K., Shinde, R.S., Klötgen, A., Halaby, M.J., Lamorte, S., Ciudad, M.T., et al. (2022) Tryptophan-Derived Microbial Metabolites Activate the Aryl Hydrocarbon Receptor in Tumor-Associated Macrophages to Suppress Anti-Tumor Immunity. Immunity, 55, 324-340.e8. https://doi.org/10.1016/j.immuni.2022.01.006 |
[10] |
Su, Y., Banerjee, S., White, S.V. and Kortylewski, M. (2018) STAT3 in Tumor-Associated Myeloid Cells: Multitasking to Disrupt Immunity. International Journal of Molecular Sciences, 19, Article 1803. https://doi.org/10.3390/ijms19061803 |
[11] |
Glavey, S.V., Naba, A., Manier, S., Clauser, K., Tahri, S., Park, J., et al. (2017) Proteomic Characterization of Human Multiple Myeloma Bone Marrow Extracellular Matrix. Leukemia, 31, 2426-2434. https://doi.org/10.1038/leu.2017.102 |
[12] |
Ho, M., Dasari, S., Visram, A., Drake, M.T., Charlesworth, M.C., Johnson, K.L., et al. (2023) An Atlas of the Bone Marrow Bone Proteome in Patients with Dysproteinemias. Blood Cancer Journal, 13, Article No. 63. https://doi.org/10.1038/s41408-023-00840-8 |
[13] |
Xu, Y., Guo, J., Liu, J., Xie, Y., Li, X., Jiang, H., et al. (2021) Hypoxia-Induced CREB Cooperates MMSET to Modify Chromatin and Promote DKK1 Expression in Multiple Myeloma. Oncogene, 40, 1231-1241. https://doi.org/10.1038/s41388-020-01590-8 |
[14] |
Parrondo, R.D., Ailawadhi, S. and Cerchione, C. (2024) Bispecific Antibodies for the Treatment of Relapsed/Refractory Multiple Myeloma: Updates and Future Perspectives. Frontiers in Oncology, 14, Article 1394048. https://doi.org/10.3389/fonc.2024.1394048 |
[15] |
Bhutani, M., Robinson, M., Foureau, D., Atrash, S., Paul, B., Guo, F., et al. (2025) MRD-Driven Phase 2 Study of Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone in Newly Diagnosed Multiple Myeloma. Blood Advances, 9, 507-519. https://doi.org/10.1182/bloodadvances.2024014417 |
[16] |
Brinkmann, U. and Kontermann, R.E. (2021) Bispecific Antibodies. Science, 372, 916-917. https://doi.org/10.1126/science.abg1209 |
[17] |
Devasia, A.J., Chari, A. and Lancman, G. (2024) Bispecific Antibodies in the Treatment of Multiple Myeloma. Blood Cancer Journal, 14, Article No. 158. https://doi.org/10.1038/s41408-024-01139-y |
[18] |
Cohen, Y.C., Magen, H., Gatt, M., Sebag, M., Kim, K., Min, C., et al. (2025) Talquetamab plus Teclistamab in Relapsed or Refractory Multiple Myeloma. New England Journal of Medicine, 392, 138-149. https://doi.org/10.1056/nejmoa2406536 |
[19] |
Wang, Z., Chen, C., Wang, L., Jia, Y. and Qin, Y. (2022) Chimeric Antigen Receptor T-Cell Therapy for Multiple Myeloma. Frontiers in Immunology, 13, Article 1050522. https://doi.org/10.3389/fimmu.2022.1050522 |
[20] |
Sheykhhasan, M., Ahmadieh-Yazdi, A., Vicidomini, R., Poondla, N., Tanzadehpanah, H., Dirbaziyan, A., et al. (2024) CAR T Therapies in Multiple Myeloma: Unleashing the Future. Cancer Gene Therapy, 31, 667-686. https://doi.org/10.1038/s41417-024-00750-2 |
[21] |
Swan, D., Madduri, D. and Hocking, J. (2024) CAR-T Cell Therapy in Multiple Myeloma: Current Status and Future Challenges. Blood Cancer Journal, 14, Article No. 206. https://doi.org/10.1038/s41408-024-01191-8 |
[22] |
Zhou, D., Sun, Q., Xia, J., Gu, W., Qian, J., Zhuang, W., et al. (2024) Anti-BCMA/GPRC5D Bispecific CAR T Cells in Patients with Relapsed or Refractory Multiple Myeloma: A Single-Arm, Single-Centre, Phase 1 Trial. The Lancet Haematology, 11, e751-e760. https://doi.org/10.1016/s2352-3026(24)00176-5 |
[23] |
Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A.L., Ortolan, E., et al. (2008) Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in Physiology and Pathology. Physiological Reviews, 88, 841-886. https://doi.org/10.1152/physrev.00035.2007 |
[24] |
Horenstein, A.L., Faini, A.C., Morandi, F., Ortolan, E., Storti, P., Giuliani, N., et al. (2025) Monoclonal Anti-CD38 Therapy in Human Myeloma: Retrospects and Prospects. Frontiers in Immunology, 16, Article 1519300. https://doi.org/10.3389/fimmu.2025.1519300 |
[25] |
Franssen, L.E., Stege, C.A.M., Zweegman, S., van de Donk, N.W.C.J. and Nijhof, I.S. (2020) Resistance Mechanisms Towards CD38-Directed Antibody Therapy in Multiple Myeloma. Journal of Clinical Medicine, 9, Article 1195. https://doi.org/10.3390/jcm9041195 |
[26] |
Iversen, K.F. (2024) Mechanisms of Resistance to Daratumumab in Patients with Multiple Myeloma. Basic & Clinical Pharmacology & Toxicology, 135, 401-408. https://doi.org/10.1111/bcpt.14054 |
[27] |
Firestone, R.S., Socci, N.D., Shekarkhand, T., Zhu, M., Qin, W.G., Hultcrantz, M., et al. (2024) Antigen Escape as a Shared Mechanism of Resistance to BCMA-Directed Therapies in Multiple Myeloma. Blood, 144, 402-407. https://doi.org/10.1182/blood.2023023557 |
[28] |
Tsyklauri, O., Chadimova, T., Niederlova, V., Kovarova, J., Michalik, J., Malatova, I., et al. (2023) Regulatory T Cells Suppress the Formation of Potent KLRK1 and IL-7R Expressing Effector CD8 T Cells by Limiting Il-2. eLife, 12, e79342. https://doi.org/10.7554/elife.79342 |
[29] |
Kawano, Y. (2021) The Role of Regulatory T Cells in Multiple Myeloma Progression. The Japanese Journal of Clinical Hematology, 62, 299-304. |
[30] |
Xia, X., Yang, Z., Lu, Q., Liu, Z., Wang, L., Du, J., et al. (2024) Reshaping the Tumor Immune Microenvironment to Improve CAR-T Cell-Based Cancer Immunotherapy. Molecular Cancer, 23, Article No. 175. https://doi.org/10.1186/s12943-024-02079-8 |
[31] |
Sklavenitis-Pistofidis, R., Aranha, M.P., Redd, R.A., et al. (2022) Immune Biomarkers of Response to Immunotherapy in Patients with High-Risk Smoldering Myeloma. Cancer Cell, 40, 1358-1373. e8. |
[32] |
Wang, X., Walter, M., Urak, R., Weng, L., Huynh, C., Lim, L., et al. (2018) Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor-Redirected T Cells against Multiple Myeloma. Clinical Cancer Research, 24, 106-119. https://doi.org/10.1158/1078-0432.ccr-17-0344 |
[33] |
Leone, R.D. and Powell, J.D. (2020) Metabolism of Immune Cells in Cancer. Nature Reviews Cancer, 20, 516-531. https://doi.org/10.1038/s41568-020-0273-y |
[34] |
Barbato, A., Giallongo, C., Giallongo, S., Romano, A., Scandura, G., Concetta, S., et al. (2023) Lactate Trafficking Inhibition Restores Sensitivity to Proteasome Inhibitors and Orchestrates Immuno‐Microenvironment in Multiple Myeloma. Cell Proliferation, 56, e13388. https://doi.org/10.1111/cpr.13388 |
[35] |
Hu, M., Li, Y., Lu, Y., Wang, M., Li, Y., Wang, C., et al. (2021) The Regulation of Immune Checkpoints by the Hypoxic Tumor Microenvironment. PeerJ, 9, e11306. https://doi.org/10.7717/peerj.11306 |
[36] |
Jacobson, C.A., Westin, J.R., Miklos, D.B., Herrera, A.F., Lee, J., Seng, J., et al. (2020) Abstract CT055: Phase 1/2 Primary Analysis of ZUMA-6: Axicabtagene Ciloleucel (Axi-Cel) in Combination with Atezolizumab (Atezo) for the Treatment of Patients (Pts) with Refractory Diffuse Large B Cell Lymphoma (DLBCL). Cancer Research, 80, CT055. https://doi.org/10.1158/1538-7445.am2020-ct055 |
[37] |
Sidana, S., Patel, K.K., Peres, L.C., Bansal, R., Kocoglu, M.H., Shune, L., et al. (2025) Safety and Efficacy of Standard-of-Care Ciltacabtagene Autoleucel for Relapsed/Refractory Multiple Myeloma. Blood, 145, 85-97. https://doi.org/10.1182/blood.2024025945 |
[38] |
Bernabei, L., Garfall, A.L., Melenhorst, J.J., Lacey, S.F., Stadtmauer, E.A., Vogl, D.T., et al. (2018) PD-1 Inhibitor Combinations as Salvage Therapy for Relapsed/Refractory Multiple Myeloma (MM) Patients Progressing after BCMA-Directed CAR T Cells. Blood, 132, 1973-1973. https://doi.org/10.1182/blood-2018-99-119514 |
[39] |
Munshi, N.C. and Anderson, K.C. (2013) Minimal Residual Disease in Multiple Myeloma. Journal of Clinical Oncology, 31, 2523-2526. https://doi.org/10.1200/jco.2013.49.2124 |