[1] |
Chen, Y., Wang, S., Liu, Y., Deng, H., Gao, H., Cao, M., et al. (2024) Ultra-Low Cost and High-Performance Paper-Based Flexible Pressure Sensor for Artificial Intelligent E-skin. Chemical Engineering Journal, 499, Article 156293. https://doi.org/10.1016/j.cej.2024.156293 |
[2] |
Loeys, S., Boute, R.N. and Antonio, K. (2025) The Use of IoT Sensor Data to Dynamically Assess Maintenance Risk in Service Contracts. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2025.01.041 |
[3] |
Rayabharapu, V.K., Rampur, V., Jyothi, N.M., Tripathi, V., Bhaskar, T. and Glory, K.B. (2022) IoT Sensor-Based Pollution Management Control Technique. Measurement: Sensors, 24, Article 100513. https://doi.org/10.1016/j.measen.2022.100513 |
[4] |
Song, X., Fan, Y. and Tang, X. (2025) FBG-Based Wearable Sensors and Devices in the Healthcare Field: A Review. Optics & Laser Technology, 181, Article 111920. https://doi.org/10.1016/j.optlastec.2024.111920 |
[5] |
Di, K., Wei, J., Ding, L., Shao, Z., Sha, J., Zhou, X., et al. (2025) A Wearable Sensor Device Based on Screen-Printed Chip with Biofuel Cell-Driven Electrochromic Display for Noninvasive Monitoring of Glucose Concentration. Chinese Chemical Letters, 36, Article 109911. https://doi.org/10.1016/j.cclet.2024.109911 |
[6] |
Holman, J.B., Oseyemi, A.E., Koumbia, M., Shi, Z., Li, C. and Ding, W. (2025) The Rise of Eco-Friendly Electronics: Exploring Wearable Paper-Based Electroanalytical Devices. Materials Science and Engineering: R: Reports, 163, Article 100939. https://doi.org/10.1016/j.mser.2025.100939 |
[7] |
Ha, T.W., Lee, C., Lim, D.Y., Kim, Y.B., Cho, H., Kim, J.H., et al. (2025) Highly Durability Carbon Fabric Strain Sensor: Monitoring Environmental Changes and Tracking Human Motion. Carbon Trends, 19, Article 100457. https://doi.org/10.1016/j.cartre.2025.100457 |
[8] |
Olabintan, A.B., Abdullahi, A.S., Yusuf, B.O., Ganiyu, S.A., Saleh, T.A. and Basheer, C. (2024) Prospects of Polymer Nanocomposite-Based Electrochemical Sensors as Analytical Devices for Environmental Monitoring: A Review. Microchemical Journal, 204, Article 111053. https://doi.org/10.1016/j.microc.2024.111053 |
[9] |
Narayana, T.L., Venkatesh, C., Kiran, A., Khan, S.B., Kumar, A., Khan, S.B., et al. (2024) Advances in Real Time Smart Monitoring of Environmental Parameters Using IoT and Sensors. Heliyon, 10, e28195. https://doi.org/10.1016/j.heliyon.2024.e28195 |
[10] |
Wei, C., Xu, Y., Hu, Y., Zhang, Q., Wei, N., Zeng, W., et al. (2025) Ti3C2Tx Mxene Paper-Based Flexible Wearable Pressure Sensor with Wide Pressure Detection Range for Human Motion Detection. Journal of Alloys and Compounds, 1017, Article 179126. https://doi.org/10.1016/j.jallcom.2025.179126 |
[11] |
Hao, J., Liu, H., Du, S., Xiang, H., Liu, G., Li, Z., et al. (2024) Rational Design of Biomass-Derived and UV-Curable Dynamic Polymer for the Encapsulation of Paper-Based Flexible Strain Sensor. Materials Today Sustainability, 26, Article 100756. https://doi.org/10.1016/j.mtsust.2024.100756 |
[12] |
Cao, M., Su, J., Fan, S., Qiu, H., Su, D. and Li, L. (2021) Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chemical Engineering Journal, 406, Article 126777. https://doi.org/10.1016/j.cej.2020.126777 |
[13] |
Ruth, S.R.A. and Bao, Z. (2020) Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials & Interfaces, 12, 58301-58316. https://doi.org/10.1021/acsami.0c19196 |
[14] |
Su, Y.-F., Han, G., Kong, Z., et al. (2020) Embeddable Piezoelectric Sensors for Strength Gain Monitoring of Cementitious Materials: The Influence of Coating Materials. Engineered Science, 11, 66-75. |
[15] |
Guo, X., Li, Y., Zeng, Z., Zhao, Y., Lei, X., Wang, Y., et al. (2023) Ultra-Sensitive Flexible Pressure Sensor with Hierarchical Structural Laser-Induced Carbon Nanosheets/Carbon Nanotubes Composite Film. Composites Science and Technology, 244, Article 110290. https://doi.org/10.1016/j.compscitech.2023.110290 |
[16] |
Zhu, H., Dai, S., Cao, J., Bai, H., Zhong, Y., Zhang, Z., et al. (2022) A High-Performance Textile Pressure Sensor Based on Carbon Black/Carbon Nanotube-Polyurethane Coated Fabrics with Porous Structure for Monitoring Human Motion. Materials Today Communications, 33, Article 104541. https://doi.org/10.1016/j.mtcomm.2022.104541 |
[17] |
Wang, L., Hu, J., Wei, W., Song, Y., Li, Y., Shen, Y., et al. (2024) Electrochemical Paper-Based Sensor Based on Molecular Imprinted Polymer and Nitrogen-Doped Graphene for Tetracycline Determination. Microchemical Journal, 207, Article 111809. https://doi.org/10.1016/j.microc.2024.111809 |
[18] |
Liang, Y., Mi, X., Yang, S., Wang, J. and Zhang, C. (2024) High-Performance Flexible Pressure Sensors with Bionic Dome-Shaped Fold Structures Inspired by Crocodile Skin. Sensors and Actuators A: Physical, 378, Article 115827. https://doi.org/10.1016/j.sna.2024.115827 |
[19] |
Pierre Claver, U. and Zhao, G. (2021) Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Advanced Engineering Materials, 23, Article 2001187. https://doi.org/10.1002/adem.202001187 |
[20] |
Zhang, C., Tao, M., Luo, W., Zhao, X., Li, P., Gou, X., et al. (2024) Graphene Sterically-Wrapped Textile Piezoresistive Sensors: A Spray Coating Path for Synergistically Advancing Sensitivity and Response Range. Chemical Engineering Journal, 495, Article 153533. https://doi.org/10.1016/j.cej.2024.153533 |
[21] |
Zhao, W., Natsuki, J., Dinh Trung, V., Li, H., Tan, J., Yang, W., et al. (2024) AgNPs/CNTs Modified Nonwoven Fabric for PET-Based Flexible Interdigitated Electrodes in Pressure Sensor Applications. Chemical Engineering Journal, 499, Article 156252. https://doi.org/10.1016/j.cej.2024.156252 |
[22] |
Chen, Z., Ma, Y., Wang, H., Yu, B., Qian, L. and Zhao, Z. (2024) Starfish-Inspired Ultrasensitive Piezoresistive Pressure Sensor with an Ultra-Wide Detection Range for Healthcare and Intelligent Production. Chemical Engineering Journal, 497, Article 154953. https://doi.org/10.1016/j.cej.2024.154953 |
[23] |
Wright, D.N., Züchner, M., Annavini, E., Escalona, M.J., Hammerlund Teige, L., Whist Tvedt, L.G., et al. (2024) From Wires to Waves, a Novel Sensor System for in vivo Pressure Monitoring. Scientific Reports, 14, Article No. 7570. https://doi.org/10.1038/s41598-024-58019-5 |
[24] |
Romano, C., Lo Presti, D., Silvestri, S., Schena, E. and Massaroni, C. (2024) Flexible Textile Sensors-Based Smart T-Shirt for Respiratory Monitoring: Design, Development, and Preliminary Validation. Sensors, 24, Article 2018. https://doi.org/10.3390/s24062018 |
[25] |
Xiong, Y., Shen, Y., Tian, L., Hu, Y., Zhu, P., Sun, R., et al. (2020) A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring. Nano Energy, 70, Article 104436. https://doi.org/10.1016/j.nanoen.2019.104436 |
[26] |
Zheng, Y., Yu, Z., Mao, G., Li, Y., Pravarthana, D., Asghar, W., et al. (2020) A Wearable Capacitive Sensor Based on Ring/Disk‐Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. Global Challenges, 4, Article ID: 1900079. https://doi.org/10.1002/gch2.201900079 |
[27] |
Aubeeluck, D.A., Forbrigger, C., Mohseni Taromsari, S., Chen, T., Diller, E. and Naguib, H.E. (2024) Screen-Printed Capacitive Tactile Sensor for Monitoring Tool-Tissue Interactions and Grasping Performances of a Surgical Magnetic Microgripper. ACS Applied Electronic Materials, 6, 6365-6377. https://doi.org/10.1021/acsaelm.4c00841 |
[28] |
Zhao, X., Chen, K., Huang, W., Luo, F., Wang, X. and Qin, Y. (2024) A Skin-Like Self-Powered Flexible Sensor for Wearable Monitoring and Robotic Tactile Application. IEEE Sensors Journal, 24, 39651-39658. https://doi.org/10.1109/jsen.2024.3476173 |
[29] |
Zhang, X., Ma, J., Deng, H., Zhong, J., Xu, K., Wu, Q., et al. (2024) A Mixed-Coordination Electron Trapping-Enabled High-Precision Touch-Sensitive Screen for Wearable Devices. Bio-Design and Manufacturing, 7, 413-427. https://doi.org/10.1007/s42242-024-00293-3 |
[30] |
Wang, X., Yu, J., Cui, Y. and Li, W. (2021) Research Progress of Flexible Wearable Pressure Sensors. Sensors and Actuators A: Physical, 330, Article 112838. https://doi.org/10.1016/j.sna.2021.112838 |
[31] |
Yun, T., Du, J., Ji, X., Tao, Y., Cheng, Y., Lv, Y., et al. (2023) Waterproof and Ultrasensitive Paper-Based Wearable Strain/Pressure Sensor from Carbon Black/Multilayer Graphene/Carboxymethyl Cellulose Composite. Carbohydrate Polymers, 313, Article 120898. https://doi.org/10.1016/j.carbpol.2023.120898 |
[32] |
Chen, M., Li, K., Cheng, G., He, K., Li, W., Zhang, D., et al. (2018) Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials & Interfaces, 11, 2551-2558. https://doi.org/10.1021/acsami.8b20284 |
[33] |
Wang, C., Quan, J., Liu, L., Cao, P., Ding, K., Ding, Y., et al. (2024) A Rigid-Soft Hybrid Paper-Based Flexible Pressure Sensor with an Ultrawide Working Range and Frequency Bandwidth. Journal of Materials Chemistry A, 12, 13994-14004. https://doi.org/10.1039/d4ta01394h |
[34] |
Wang, X., Chai, Y., Wang, Z., Yu, J. and Chen, X. (2023) A Linear and Large-Range Pressure Sensor Based on Hierarchical Structural SnO2@Carbon Nanotubes/Polyurethane Sponge. Ceramics International, 49, 30579-30585. https://doi.org/10.1016/j.ceramint.2023.07.009 |
[35] |
Zang, X., Jiang, Y., Wang, X., Wang, X., Ji, J. and Xue, M. (2018) Highly Sensitive Pressure Sensors Based on Conducting Polymer-Coated Paper. Sensors and Actuators B: Chemical, 273, 1195-1201. https://doi.org/10.1016/j.snb.2018.06.132 |
[36] |
Pranjale, G.S., Rayudu, G.P. and Patil, G.C. (2024) Analysis and Fabrication of Paper Based Screen-Printed Soil Potassium Sensor. Journal of the Indian Chemical Society, 101, Article 101492. https://doi.org/10.1016/j.jics.2024.101492 |
[37] |
Wu, G., Wu, L., Zhang, H., Wang, X., Xiang, M., Teng, Y., et al. (2024) Research Progress of Screen-Printed Flexible Pressure Sensor. Sensors and Actuators A: Physical, 374, Article 115512. https://doi.org/10.1016/j.sna.2024.115512 |
[38] |
Jung, M., Kim, K., Kim, B., Cheong, H., Shin, K., Kwon, O., et al. (2017) Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Applied Materials & Interfaces, 9, 26974-26982. https://doi.org/10.1021/acsami.7b05672 |
[39] |
Wang, Z., Ding, J. and Guo, R. (2023) Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range. ACS Applied Materials & Interfaces, 15, 4789-4798. https://doi.org/10.1021/acsami.2c19100 |
[40] |
Li, A., Xu, J., Zhou, S., Zhang, Z., Cao, D., Wang, B., et al. (2024) All‐Paper‐Based, Flexible, and Bio‐Degradable Pressure Sensor with High Moisture Tolerance and Breathability through Conformally Surface Coating. Advanced Functional Materials, 34, Article ID: 2410762. https://doi.org/10.1002/adfm.202410762 |
[41] |
Liu, H., Zhang, Q., Yang, N., Jiang, X., Wang, F., Yan, X., et al. (2023) Ti3C2Tx MXene Paper-Based Wearable and Degradable Pressure Sensor for Human Motion Detection and Encrypted Information Transmission. ACS Applied Materials & Interfaces, 15, 44554-44562. https://doi.org/10.1021/acsami.3c09176 |
[42] |
Lai, S., Garufi, A., Madeddu, F., Angius, G., Bonfiglio, A. and Cosseddu, P. (2019) A Wearable Platform for Monitoring Wrist Flexion and Extension in Biomedical Applications Using Organic Transistor-Based Strain Sensors. IEEE Sensors Journal, 19, 6020-6028. https://doi.org/10.1109/jsen.2019.2909174 |
[43] |
Lin, X., Teng, Y., Xue, H., Bing, Y., Li, F., Wang, J., et al. (2024) Janus Conductive Mechanism: An Innovative Strategy Enabling Ultra‐Wide Linearity Range Pressure Sensing for Multi‐Scenario Applications. Advanced Functional Materials, 34, Article ID: 2316314. https://doi.org/10.1002/adfm.202316314 |
[44] |
Shen, L., Zhou, S., Gu, B., Wang, S. and Wang, S. (2023) Highly Sensitive Strain Sensor Fabricated by Direct Laser Writing on Lignin Paper with Strain Engineering. Advanced Engineering Materials, 25, Article ID: 2201882. https://doi.org/10.1002/adem.202201882 |
[45] |
Xia, Y., Huang, P., Lin, X., Wu, L., Li, K., Gao, C., et al. (2023) The Piezoresistive Pressure Sensors Based on ITO Nanocrystalline-Plant Fiber Composite. Science China Materials, 66, 3922-3930. https://doi.org/10.1007/s40843-023-2534-1 |
[46] |
Chowdhury, A.H., Jafarizadeh, B., Pala, N. and Wang, C. (2023) Paper-Based Supercapacitive Pressure Sensor for Wrist Arterial Pulse Waveform Monitoring. ACS Applied Materials & Interfaces, 15, 53043-53052. https://doi.org/10.1021/acsami.3c08720 |