[1] |
陶阿丽, 曹殿洁, 华芳, 等. 植物组织培养技术研究进展[J]. 长江大学学报, 2018, 15(18): 31-35. |
[2] |
Ramming, D.W. (1990) The Use of Embryo Culture in Fruit Breeding. HortScience, 25, 393-398. https://doi.org/10.21273/hortsci.25.4.393 |
[3] |
沈惠娟. 木本植物组织培养技术[M]. 北京: 中国农业科技出版社, 1992. |
[4] |
藏红霞, 藏淑英. 丁香花[M]. 上海: 上海科学技术出版社, 2000. |
[5] |
韩沙沙, 张凌媛, 何桥, 等. 油桃组织培养及再生材料的原生体制备研究[J]. 西南大学学报(自然科学版), 2015, 37(5): 23-30. |
[6] |
秦伟. 新疆野苹果繁育特性及种质资源亲缘关系研究[D]: [博士学位论文]. 乌鲁木齐: 新疆农业大学, 2010. |
[7] |
冯莎莎, 姚太梅, 郑志新, 等. 杏扁品种优一组织培养再生体系建立的初步研究[J]. 河北北方学院学报(自然科学版), 2018, 34(5): 41-46. |
[8] |
陈曦. 野生欧洲李组织培养体系试验研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆农业大学, 2021. |
[9] |
刘小芳, 冯建荣, 梁晓桐, 等. 库尔勒香梨组织培养的研究[J]. 山东农业科学, 2016, 48(5): 9-13. |
[10] |
韩如春, 常婧, 赵静, 等. 草莓茎尖组培快繁体系的建立[J]. 山西农业科学, 2022, 50(1): 15-21. |
[11] |
方庆, 熊明国, 决超. 桃组织培养外植体灭菌方法的筛选[J]. 中国园艺文摘, 2015, 31(7): 36-37. |
[12] |
郭劲鹏. 欧李组织培养快繁技术[J]. 中国林副特产, 2012(5): 83-84. |
[13] |
贾海燕, 孔德柱, 张吉树, 等. 京欧1号, 京欧2号欧李快繁技术[J]. 中国果树, 2015(3): 38-41. |
[14] |
Arab, M.M., Yadollahi, A., Hosseini-Mazinani, M. and Bagheri, S. (2014) Effects of Antimicrobial Activity of Silver Nanoparticles on in Vitro Establishment of G × N15 (Hybrid of Almond × Peach) Rootstock. Journal of Genetic Engineering and Biotechnology, 12, 103-110. https://doi.org/10.1016/j.jgeb.2014.10.002 |
[15] |
李新江, 郑永春, 迟丽华. 草莓组培苗继代培养基筛选试验[J]. 吉林农业科学, 2013, 38(4): 63-65. |
[16] |
蒋润迪. 欧李组织培养和扦插繁育关键技术研究[D]: [硕士学位论文]. 北京: 北京林业大学, 2021. |
[17] |
王小平, 汪卫星, 向素琼, 等. 刺梨组织培养及多倍体诱导研究[R]. 重庆: 西南大学园艺园林学院, 2008. |
[18] |
崔广荣, 刘云兵, 郭蕾娜. 草莓增值和生根壮苗培养基的筛选[J]. 中国农学通报, 2003(6): 210-213. |
[19] |
Dobránszki, J. and Mendler-Drienyovszki, N. (2014) Cytokinin-Induced Changes in the Chlorophyll Content and Fluorescence of in Vitro Apple Leaves. Journal of Plant Physiology, 171, 1472-1478. https://doi.org/10.1016/j.jplph.2014.06.015 |
[20] |
Bedaui, M.A., Alphonse, M., Bondok, A.Z., et al. (1990) Propagation of Some Strawberry Cultivars by Means of Tissue Culture Technique. Egyption Journal of Horticulture, 17, 9-16. |
[21] |
Podwyszyńska, M., Sowik, I., Machlańska, A., Kruczyńska, D. and Dyki, B. (2017) In Vitro Tetraploid Induction of Malus × Domestica Borkh. Using Leaf or Shoot Explants. Scientia Horticulturae, 226, 379-388. https://doi.org/10.1016/j.scienta.2017.08.042 |
[22] |
Matsut, A.N. and Yamake, S. (1991) Adventitious Regeneration in Vitro in Cherries. L. Adventitious Shoot Formation from in Vitro Cultured Leaves of the Cherry Rootstock 209/1. Gartenbauw issenschaft, 56, 210-213. |
[23] |
Barbara, N and Kazimieerz, M. (2002) The Course and Efficiency of Organogenesis on LESF Explants of Plum Wegierka zwykla’ (Prumus domestical.) Induced by Cytokinins. Electronic Journal of Polish Agricultural Universities, 5, 2. |
[24] |
韩清芳, 徐凌飞, 马锋旺, 等. 梨叶柄再生不定芽的研究[J]. 西北植物学报, 2002(6): 1485-1488. |
[25] |
陈曦, 颉刚刚, 刘柚藓, 等. 野生欧洲李叶片愈伤组织诱导及增殖培养体系研究[J]. 北方园艺, 2020(24): 1-7. |
[26] |
涂俊凡, 秦仲麒, 李先明, 等. 沙梨种子组织培养技术研究[J]. 中国南方果树, 2016, 45(5): 121-123. |
[27] |
Cati, M., Gennari, F. and Marino, G. (2014) Effect of Culture Jar Seal on in Vitro Rooting and Subsequent Acclimatization of Three Italian Apricot Varieties. Scientia Horticulturae, 168, 120-123. https://doi.org/10.1016/j.scienta.2014.01.026 |
[28] |
Marino, G. and Noferini, M. (2013) Effect of the Type of Closure for Culture Bottles on Micropropagation Efficiency of Apricot. Scientia Horticulturae, 161, 306-313. https://doi.org/10.1016/j.scienta.2013.07.020 |
[29] |
Malnoy, M., Viola, R., Jung, M., Koo, O., Kim, S., Kim, J., et al. (2016) DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Frontiers in Plant Science, 7, Article 1904. https://doi.org/10.3389/fpls.2016.01904 |
[30] |
Wilson, F.M., Crisosto, G.M. and Crisosto, C.H. (2017) CRISPR/Cas9-Mediated Editing of the FaTM6 Gene in Strawberry (Fragaria × ananassa). Horticulture Research, 4, 17041. |
[31] |
Zhang, F., Wen, Y. and Guo, X. (2014) CRISPR/Cas9 for Genome Editing: Progress, Implications and Challenges. Human Molecular Genetics, 23, R40-R46. https://doi.org/10.1093/hmg/ddu125 |
[32] |
Khan, M.A. and Korban, S.S. (2012) Association Mapping in Forest Trees and Fruit Crops. Journal of Experimental Botany, 63, 4045-4060. https://doi.org/10.1093/jxb/ers105 |
[33] |
Bassil, N.V., Davis, T.M., Zhang, H., Ficklin, S., Mittmann, M., Webster, T., et al. (2015) Development and Preliminary Evaluation of a 90 K Axiom® SNP Array for the Allo-Octoploid Cultivated Strawberry Fragaria × ananassa. BMC Genomics, 16, Article No. 155. https://doi.org/10.1186/s12864-015-1310-1 |
[34] |
Peace, C., Bassil, N., Main, D., Ficklin, S., Rosyara, U.R., Stegmeir, T., et al. (2012) Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry. PLOS ONE, 7, e48305. https://doi.org/10.1371/journal.pone.0048305 |
[35] |
Daccord, N., Celton, J., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., et al. (2017) High-Quality De Novo Assembly of the Apple Genome and Methylome Dynamics of Early Fruit Development. Nature Genetics, 49, 1099-1106. https://doi.org/10.1038/ng.3886 |
[36] |
Li, Y., Zhang, L., Wang, X., et al. (2018) Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Growth and Flavor Formation in Strawberry Fruits. Frontiers in Plant Science, 9, Article 1017. |
[37] |
Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X., et al. (2010) Metabolic Profiling of Strawberry (Fragaria × ananassa Duch.) during Fruit Development and Maturation. Journal of Experimental Botany, 62, 1103-1118. https://doi.org/10.1093/jxb/erq343 |