基于可重构热电阵列的动态电池温控系统——实现动态温度均匀化
Dynamic Battery Temperature Control System Based on Reconfigurable Thermoelectric Arrays—Achieving Dynamic Temperature Uniformity
DOI: 10.12677/sea.2025.142018, PDF, HTML, XML,    国家自然科学基金支持
作者: 黄宏滔, 贾宏志*:上海理工大学光电信息与计算机工程学院,上海;张 磊, 徐舒喜, 刘 源:华东光电集成器件研究所,安徽 蚌埠
关键词: 可重构热电阵列电池热管理温度均匀性能量收集模糊PIDReconfigurable Thermoelectric Arrays Battery Thermal Management Temperature Uniformity Energy Harvesting Fuzzy-PID
摘要: 基于热电效应的可逆性,本研究提出了一种动态可重构热电阵列系统,旨在解决电池组内部温度不均的问题,并实现快速收敛与能量收集。该系统通过动态切换每个热电模块(Thermoelectric Module, TEM)的工作模式——加热、冷却或发电,结合热点追踪技术及模糊PID (Fuzzy-PID)控制算法,实现了按需精准温控,不仅有效维持了电池工作环境的温度均匀性,还最大化利用了热差进行电力回收。实验验证表明,系统温度误差仅为1.77℃,系统超调损耗仅占整体功耗的0.11%,且在能量收集模式下能够达到319 mV的最大俘获电压。这项工作提供了高效绿色的温控解决方案。
Abstract: Leveraging the reversibility of the thermoelectric effect, this study introduces a dynamic reconfigurable thermoelectric array system designed to solve temperature imbalance within battery packs, enabling rapid convergence and energy harvesting. The system dynamically switches the operating mode of each thermoelectric module (TEM)—heating, cooling, or power generation —combined with hotspot tracking technology and a Fuzzy-PID control algorithm, achieving on-demand precise temperature control. This not only effectively maintains temperature uniformity within the battery operating environment but also maximizes the utilization of thermal gradients for power recovery. Experimental validation shows that the temperature error is only 1.77˚C, overshoot losses account for only 0.11% of the total power consumption, and the maximum captured voltage in the energy harvesting mode reaches 319 mV. This work presents an efficient and environmentally-friendly temperature control solution.
文章引用:黄宏滔, 张磊, 徐舒喜, 刘源, 贾宏志. 基于可重构热电阵列的动态电池温控系统——实现动态温度均匀化[J]. 软件工程与应用, 2025, 14(2): 189-200. https://doi.org/10.12677/sea.2025.142018

1. 引言

锂离子电池凭借其高能量密度、长循环寿命和低自放电率等优势,已成为电动汽车、无人机和物联网等领域的首选电源[1]-[4]。然而,电池在放电过程中,如果散热不及时或不充分,大量热量的积累可能引发温度急剧上升,最终导致热失控问题[5]-[7]。此外,电池组内部单体电池间的温度差异会加速电池不均衡衰减,进而影响整体性能和循环寿命。为确保锂离子电池组的稳定高效运行,将工作温度严格控制在25℃至40℃的最佳范围内至关重要[8]-[10]。因此,开发高效的电池热管理系统(Battery Thermal Management System, BTMS)成为当前研究的重点。

现有BTMS技术主要包括相变材料(Phase Change Material, PCM)冷却、空气冷却、液体冷却和热电冷却(Thermoelectric Cooling, TEC) [11]-[14]。Lin等人[15]开发了一种基于碳纳米管(Carbon Nanotube, CNT)与MXene复合PCM的BTMS,显著提升热导性能和温度均匀性,同时降低温升并延长电池寿命。然而,由于其属于被动冷却技术,性能仍不及主动冷却。空气冷却具有结构简单、维护方便的优点[16] [17]。Chen等人[18]提出了一种多流动模式集成的高效空气冷却系统,通过优化控制策略和缩小通道宽度,实现精准的温差控制,电芯间的平均温差降低超过67%。尽管主动冷却提升了性能,但冷却过程仍需一定时间,并且在稳定阶段可能出现抖动与不稳定性。相比之下,液体冷却能够提供更均匀的散热效果,冷却效率更高且所需时间更短[19] [20]。Gan团队[21]设计了一种对称双螺旋通道液冷板(Liquid Cooling Plate, LCP),显著提升电池储能系统(Battery Energy Storage System, BESS)的冷却效率和温度均匀性,其性能评估标准相比传统设计提高21.2%~72.1%。然而,液冷板增加了系统的重量和成本,限制了其在某些应用场景中的适用性。热电冷却因无污染、无机械噪音和易于控制等特点,已被广泛研究[22]-[25]。例如,Luo等人[26]提出了一种基于双层TEC的BTMS,并通过多物理场耦合模型验证了其在极端温度条件下的优异冷却与预热性能。然而,现有热电冷却技术仅利用了TEM的珀尔帖效应,未充分开发其塞贝克效应的潜力,如用于废热回收的热电发生器(Thermoelectric Generator, TEG) [27] [28]

为此,本研究提出了一种基于动态可重构热电阵列的温度管理系统,旨在解决电池组内部温度不均和快速收敛的挑战,同时实现能量回收功能。该系统能够根据热失控电池的温度分布,动态切换热电模块的工作模式,并结合热点追踪技术与Fuzzy-PID控制算法,有效维持电池工作环境的温度均匀性。此外,系统集成了一种能量回收技术,能够捕获并转化环境中的微温差废热为可用电力,实现能源循环利用。这种设计突破了传统冷却方法的局限性,为锂离子电池的高效热管理提供了新思路。

2. 可重构热电阵列电池温控系统

可重构热电阵列电池温控系统的总体框架如图1所示。系统首先采集热失控电池的温度分布信息,并传递至温度检测模块。MCU利用热点追踪技术确定极值热点Tex后,将信息传输至热电控制模块,动态重构热电阵列,根据需求将TEM配置为TEC或TEG模式。随后,通过Fuzzy-PID控制与温度反馈,向TEC施加特定电流,实现对电池温度的精准调节。同时,能量收集模块通过TEG利用温差发电,实现温控与能量回收的协同优化。

Figure 1. System architecture diagram

1. 系统框架图

2.1. 热电阵列可重构电路

(a) (b)

Figure 2. Single-stage thermoelectric control; (a) circuit diagram, (b) flow diagram

2. 单级热电控制;(a) 电路结构,(b) 流程图

为实现热电阵列的可重构,使每个TEM具备冷却、加热和能量收集的并行功能,本文提出了一种基于配置信号切换热电工作模式的电路设计。如图2(a)所示,控制信号(rowdircol)通过两个异或门和一个与门生成开关信号Z (布尔表达式(1)),用于控制继电器的通断状态。根据图2(b)的单级热电控制流程,当继电器闭合时,TEM切换为TEC模式,dir信号控制H桥电流方向,输出电压Uout驱动TEC,将电能转化为热能,实现电池温控;当继电器断开时,TEM切换为TEG模式,利用电池与水冷板之间的温差发电,实现能量回收。

Z = ( c o l d i r r o w ¯ ) + ( c o l ¯ d i r ¯ r o w ) (1)

(a) (b)

(c)

Figure 3. (a) Array connection method; (b) Operating mode of each TEM when control signals col-1 to col-x are 10…0, row-1 to row-y are 00…0, and dir = 1; (c) Schematic of battery thermal control system based on Reconfigurable thermoelectric array

3. (a) 阵列连接方式;(b) 在控制信号col-1col-x为10…0,row-1row-y为00…0,且dir = 1的情况下,各TEM的工作模式;(c) 基于可重构热电阵列的电池温控系统原理图

采用图2的设计,并结合图3(a)所示的阵列连接方式,通过X + Y个控制信号即可实现对X × Y个TEM阵列的可重构控制。如图3(b)所示,当控制信号设置为col-1col-x = 10…0,row-1row-y = 0…0,dir = 1时,row-1上的所有TEM均处于TEC模式,其余部分为TEG模式,实现TEC与TEG的并行工作。基于此方法,构建出图3(c)所示的可重构热电阵列电池温控系统。系统通过温度传感器LM75采集热失控电池的温度信息,并存储至红黑树数据结构以快速获取温度分布。随后,热点追踪算法定位Tex,并通过SPI将控制信号发送至串行输入/并行输出移位寄存器74HC595,动态重构热电阵列中各TEM的功能配置。对于TEC,Fuzzy-PID算法根据热点与目标温度的误差及温度反馈生成脉宽调制(Pulse Width Modulation, PWM)波,驱动H桥提供适当电流至TEC进行精准温控,同时通过电能监测芯片INA226监控电能状态,提前预警H桥短路并及时关闭保护电路;对于TEG,利用温差发电将电压输出至LTC3108,为电池和低功耗芯片提供自供能,实现能量回收与温控的协同优化。

2.2. 温度管理调度算法的实现

(a) (b)

Figure 4. (a) Flowchart of the temperature management algorithm; (b) Calculation of the temperature distribution weight ratio

4. (a) 温度管理算法流程图;(b) 温度分布权重比的计算

图4(a)所示,温度管理调度算法采用闭环控制架构。系统通过热点追踪模块实时获取目标温度点Tex,并计算其温度误差Eex。当检测到Eex > Emin时,算法将Tex对应的TEM设置为制冷模式(TEC),其余TEM切换为发电模式(TEG)。同时,基于EexTex的实时反馈,通过Fuzzy-PID控制器动态调节H桥模块的电流参数,实现Tex及其邻近区域的精准温控。

针对热失控电池温度分布不均匀但具有连续性和扩散性,本文提出具有扩散补偿机制的热点追踪方法。首先评估温度差异分布Ei,j (公式(2)),计算全域温度差异总和Etotal (公式(3))。考虑温度传导的连续性特征,构建权重比矩阵量化各节点对邻域的交互影响(如图4(b)所示,蓝色标识需冷却区,红色标识需加热区)。通过卷积运算生成温度管理集,动态提取管理集极值Mex (公式(4)),实现关键温度点Tex的定位及其周边区域的协同调控。

E i , j = | T i , j T target | (2)

E total = ( i , j ) ( x , y ) E i , j (3)

M e x = max 1 i x , 1 j y ( e i , j w i , j ) (4)

进一步地,系统通过TEG-TEC复合阵列构建双向能量网络。在非平衡态工况下,系统效率ηs由能量流的时空分布特性决定。在忽略焦耳热损耗以及热传导损耗下,定义有效能量因子ξ表征单位无效能耗对应的有效制冷功率,为阵列工作模式优化提供量化依据,则ηs可重构为:

ξ = P T E C - P P T E C - N (5)

η s = P T E C - P - P T E G P T E C - N + P T E C - P - P T E G = 1 1 + ( ξ + P T E G / P T E C - P ) 1 (6)

式中,PTEC-N源于热管理延迟、控制超调及寄生热传导等不可逆损耗,而PTEC-P对应目标温区的有效热搬运功率。

对于传统PID控制在非线性温控场景中的局限性[29] [30],采用如式(7)所示的Fuzzy-PID复合控制器。其参数组{Kp, Ti, Td}通过模糊推理动态调整:首先对温度误差ek及其变化率Δek进行模糊化处理,依据预设规则进行规则推理,最终通过重心法解模糊输出控制量。

D k = K p ( e k + 1 T i n = 1 n T e n + T d e k - e k 1 T ) (7)

式中,ΚpTiTdT分别是比例系数、积分调节周期、微分调节周期和调节周期; e k e k 1 分别为第k次和第 k 1 次误差。

2.3. 智能用户界面设计

一个直观易用的操作界面对于提升工作效率至关重要,它能够帮助操作员清晰掌握当前温度分布状况,并据此采取最优控温措施。基于强大的Qt Designer平台,运用C++编程语言设计了一款功能完备的温度检测系统,如图5所示。

系统首先创建了一个热电阵列(TEs类)实例,该类负责初始化线程池结构、用户界面(User Interface, UI)以及底层硬件配置。在统一调度的全局线程池中,部署了三大关键线程任务:温度读取线程、电能监测线程以及MQTT物联网数据同步线程。其中,温度读取和电能监测线程实时采集温度和电能数据,并将这些数据实时反映在曲线图表与用户交互界面中。进一步地,在完成温度管理参数配置后系统启动温度管理控制线程,该线程通过实施Fuzzy-PID算法,根据计算结果生成相应的PWM波形信号。最终,带有特定占空比的PWM波被送入H桥驱动电路,从而精确控制热电阵列的温度,实现整个系统的闭环温度管理。

(a)

(b)

Figure 5. (a) Software operation interface; (b) Linux system multi-threaded collaborative execution framework process

5. (a) 软件操作界面;(b) Linux系统多线程协同执行框架流程

3. 结果与讨论

3.1. 系统环境设置

Figure 6. Systematic experimental platform

6. 系统实验平台

为验证所提系统的有效性,搭建了如图6所示的实验平台,该平台主要由热电阵列模块、热电控制模块和数据监测模块等关键组成部分构成。热电阵列模块包括热失控电池、9个40 mm × 40 mm的TEM以及配套的水冷系统,通过硅脂进行耦合以确保高效的热传导。热电控制模块作为系统的核心,集成了MCU、H桥电路、能量收集电路和热电可重构电路。数据监测模块包含UI界面显示、温度传感器和功率传感器,实时展示实验过程中的关键参数,如温度、功率以及各TEM的工作状态,确保系统的全面监控与可视化管理。

3.2. 实验结果验证

(a) (b)

(c)

(d)

(e)

Figure 7. (a) Initial cell temperature distribution; (b) Final cell temperature distribution; (c) Temperature plot; (d) Temperature error and TEG capture voltage; (e) Array efficiency and TEC power consumption

7. (a) 初始电池温度分布;(b) 最终电池温度分布;(c) 温度曲线图;(d) 温度误差和TEG俘获电压;(e) 阵列效率和TEC消耗功率

基于系统硬件测试平台,本研究以一块 400 mm × 400 mm 的热失控电池为实验对象,将其划分为九个相邻温度区域(Region-1~9),分别对应不同的温度分布(T1~T9)。如图7(a)所示,电池初始温度呈现辐射状分布,温度范围从28℃至51℃,中心区域(T5)的温度最高。以T5区域的温度作为Fuzzy-PID控制计算的参考,设定基准温度Ttarget = 25℃ (电池的最佳工作温度)。通过误差公式(2)和(3)计算,由图7(d)可知,初始总误差Etotal为83.31℃,最终花费294 s的调节将Etotal降低至1.77℃。图7(b)展示了最终温度的均匀分布,温度范围从24.6℃至25.6℃,接近设定的Ttarget

图7(c)所示,动态温度管理过程分为三个阶段。在初始阶段(0~Ta),温度误差大(图7(a)),比例控制占据主导地位,实现快速温度下降,并带动周围区域温度同步下降;进入第二阶段(Ta~Tb),比例与积分控制协同作用,促使整体温度趋于平衡并加速收敛;在最终阶段(Tb~294 s),温度扩散效应和微分控制成为主要调节手段,从而实现全区域温度的动态平衡(图7(b))。

此外,图7(c)中的红色区域表明系统在大部分时间内均实现了有效控温,并且根据公式(5)计算,能量因子ξ几乎趋于无穷大,说明阵列能够高效追踪热点并进行精准热搬运,极低的超调比例进一步缩短了温度调节时间和降低了功率消耗。根据图7(e)及公式(6),计算得到阵列效率结果显示,在温度快速下降阶段(0~256.4 s)内,蓝色区域证明所有TEM均有效参与温度管理,未出现超调导致的能量回灌损耗,PTEC-P占据总功耗的99.89%。而当温度接近平衡时,尽管存在局部超调调控,但TEC的功耗已显著降低,其引起的超调损耗PTEC-N仅占整体功耗的0.11%。最后,图7(d)验证了热电阵列在执行TEC控温的同时,还能并行实现TEG温差发电,峰值捕获电压达319 mV。借助LTC3108芯片,即使在低至20 mV的电压下,也可利用超级电容将电压升至5 V或3.3 V,为低功耗设备提供稳定电源。

本研究提出的系统在关键性能指标上相较于现有技术实现了显著提升。如表1所示,本方案在调节时间和温控幅度方面分别较液冷方案缩短了26.5%和提升了23.8%,展现出更快的响应速度和更强的温控能力。在温控面积方面,400 mm × 400 mm的调控范围是液冷方案面积的4.8倍。尽管最终温度误差Etotal略高于液冷方案,但相较于风冷方案,仍减少了26.3%,且在实现较大温控幅度的前提下保持了合理的精度。此外,本系统首次实现了319 mV的电压捕获能力,实现了温度管理与能量收集的同步进行。

Table 1. Performance comparison of related studies

1. 相关研究的性能比较

方法

PCM (2025) [15]

风冷(2024) [18]

水冷(2025) [21]

本研究

调整时间/ΔT

2000 s/14.19℃

661 s/21℃

400 s/9.6℃

294 s/26℃

最终温度误差

/

2.4

1.07

1.77

温度控制区域

65.2 mm × 18.2 mm

192 mm × 130 mm

173.76 mm × 71.65 mm

400 mm × 400 mm

最大捕获电压

/

/

/

319 mV

4. 结论

本文提出了一种基于可重构热电阵列的动态电池温控系统。该系统通过可重构动态切换热电阵列的每个TEM的功能,实现了对热失控电池的温度快速收敛和均匀化,同时具备能量收集的功能。通过热点追踪和Fuzzy-PID,按需进行温度管理,能量效益最大化。实验结果显示,系统超调损耗仅占整体功耗的0.11%,最终温度误差仅为1.77℃,收敛时间为294 s。在能量收集模式下,最大俘获电压达到了319 mV。本文工作提供了高效绿色的温控解决方案。

基金项目

感谢国家自然科学基金项目(62474112)、上海市浦江计划项目(23PJD066)和科技部国家科技重大专项项目(2018AAA0103100)资助。

NOTES

*通讯作者。

参考文献

[1] Yan, Y., Wang, B., Wang, C., Xiao, C. and Zhao, D. (2024) Adaptive Maximum Available Energy Evaluation for Lithium Battery in Hydrogen-Electric Hybrid Unmanned Aerial Vehicle Applications Considering Dynamic Ambient Temperature and Aging Level. Energy Conversion and Management, 314, Article 118685.
https://doi.org/10.1016/j.enconman.2024.118685
[2] Rizvi, S., Tahir, M.W., Ramzan, N. and Merten, C. (2024) Multiscale-Multidomain Model Order Reduction of Lithium-Ion Batteries for Automobile Application: A Review. Journal of Energy Storage, 99, Article 113390.
https://doi.org/10.1016/j.est.2024.113390
[3] Kumar, R.R., Bharatiraja, C., Udhayakumar, K., Devakirubakaran, S., Sekar, K.S. and Mihet-Popa, L. (2023) Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications. IEEE Access, 11, 105761-105809.
https://doi.org/10.1109/access.2023.3318121
[4] Fan, Q., Qu, D., Xu, C., Yang, H., Yang, S., Lin, D., et al. (2025) A Lithium-Ion Battery System with High Power and Wide Temperature Range Targeting the Internet of Things Applications. Journal of Power Sources, 630, Article 236070.
https://doi.org/10.1016/j.jpowsour.2024.236070
[5] Zhou, J., Shen, W., Ma, Z., Mou, X., Zhou, Y., Li, H., et al. (2024) Chebyshev-Galerkin-Based Thermal Fault Detection and Localization for Pouch-Type Li-Ion Battery. IEEE Transactions on Industrial Informatics, 20, 3436-3445.
https://doi.org/10.1109/tii.2023.3308336
[6] Sadeghi, H. and Restuccia, F. (2025) Kinetic Modelling of Thermal Decomposition in Lithium-Ion Battery Components during Thermal Runaway. Journal of Power Sources, 629, Article 236026.
https://doi.org/10.1016/j.jpowsour.2024.236026
[7] Mousavi, S., Zadehkabir, A., Siavashi, M. and Yang, X. (2023) An Improved Hybrid Thermal Management System for Prismatic Li-Ion Batteries Integrated with Mini-Channel and Phase Change Materials. Applied Energy, 334, Article 120643.
https://doi.org/10.1016/j.apenergy.2023.120643
[8] Singh, L.K., Gupta, A.K. and Sharma, A.K. (2022) Hybrid Thermal Management System for a Lithium-Ion Battery Module: Effect of Cell Arrangement, Discharge Rate, Phase Change Material Thickness and Air Velocity. Journal of Energy Storage, 52, Article 104907.
https://doi.org/10.1016/j.est.2022.104907
[9] Sun, Z., Guo, Y., Zhang, C., Xu, H., Zhou, Q., Wang, C. (2023) A Novel Hybrid Battery Thermal Management System for Prevention of Thermal Runaway Propagation. IEEE Transactions on Transportation Electrification, 9, 5028-5038.
https://doi.org/10.1109/TTE.2022.3215691
[10] Hong, J., Wang, Z., Qu, C., Ma, F., Xu, X., Yang, J., et al. (2023) Fault Prognosis and Isolation of Lithium-Ion Batteries in Electric Vehicles Considering Real-Scenario Thermal Runaway Risks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11, 88-99.
https://doi.org/10.1109/jestpe.2021.3097827
[11] Yang, H., Yang, G., Liu, N., Zhang, S. and Gao, Q. (2025) Investigating the Impact of Inlet Angle on the Performance of Air-Cooling Lithium-Ion Battery Pack. Applied Thermal Engineering, 263, Article 125314.
https://doi.org/10.1016/j.applthermaleng.2024.125314
[12] Vashisht, S., Rajat, and Rakshit, D. (2024) Recent Advances and Perspectives in Enhancing Thermal State of Lithium-Ion Batteries with Phase Change Materials: Internal and External Heat Transfer Enhancement Factors. E Transportation, 22, Article 100381.
https://doi.org/10.1016/j.etran.2024.100381
[13] Gu, X., Ding, P., Chao, G. and Cui, Y. (2024) Analysis and Prediction of Battery Temperature in Thermal Management System Coupled Sic Foam-Composite Phase Change Material and Air. Journal of Energy Storage, 104, Article 114503.
https://doi.org/10.1016/j.est.2024.114503
[14] Gharehghani, A., Rabiei, M., Mehranfar, S., Saeedipour, S., Mahmoudzadeh Andwari, A., García, A., et al. (2024) Progress in Battery Thermal Management Systems Technologies for Electric Vehicles. Renewable and Sustainable Energy Reviews, 202, Article 114654.
https://doi.org/10.1016/j.rser.2024.114654
[15] Lin, J., Liu, D., Liu, X., Liu, M. and Cui, Y. (2025) Cnt@mxene Porous Composite PCM Based Thermal Management for Lithium-Ion Battery System. Applied Thermal Engineering, 262, Article 125240.
https://doi.org/10.1016/j.applthermaleng.2024.125240
[16] Xie, Y., Li, B., Hu, X., Lin, X., Zhang, Y. and Zheng, J. (2021) Improving the Air-Cooling Performance for Battery Packs via Electrothermal Modeling and Particle Swarm Optimization. IEEE Transactions on Transportation Electrification, 7, 1285-1302.
https://doi.org/10.1109/tte.2020.3046735
[17] Hasan, H.A., Togun, H., Abed, A.M., Biswas, N. and Mohammed, H.I. (2023) Thermal Performance Assessment for an Array of Cylindrical Lithium-Ion Battery Cells Using an Air-Cooling System. Applied Energy, 346, Article 121354.
https://doi.org/10.1016/j.apenergy.2023.121354
[18] Chen, K., Zhang, Z., Wu, B., Song, M. and Wu, X. (2024) An Air-Cooled System with a Control Strategy for Efficient Battery Thermal Management. Applied Thermal Engineering, 236, Article 121578.
https://doi.org/10.1016/j.applthermaleng.2023.121578
[19] Huang, G., Zhao, P. and Zhang, G. (2022) Real-Time Battery Thermal Management for Electric Vehicles Based on Deep Reinforcement Learning. IEEE Internet of Things Journal, 9, 14060-14072.
https://doi.org/10.1109/jiot.2022.3145849
[20] Verma, A., Saikia, T., Saikia, P., Rakshit, D. and Ugalde-Loo, C.E. (2023) Thermal Performance Analysis and Experimental Verification of Lithium-Ion Batteries for Electric Vehicle Applications through Optimized Inclined Mini-Channels. Applied Energy, 335, Article 120743.
https://doi.org/10.1016/j.apenergy.2023.120743
[21] Gan, H., Tian, J., Qiu, H., Li, G., Liu, C. and Zhao, J. (2025) Thermal Performance of Symmetrical Double-Spiral Channel Liquid Cooling Plate Based Battery Thermal Management for Energy Storage System. Applied Thermal Engineering, 263, Article 125399.
https://doi.org/10.1016/j.applthermaleng.2024.125399
[22] Zhang, S., Chen, Z., Bai, Q., Li, W. and Pei, Y. (2022) Individualization of Optimal Operation Currents for Promoting Multi-Stage Thermoelectric Cooling. Materials Today Physics, 26, Article 100746.
https://doi.org/10.1016/j.mtphys.2022.100746
[23] Park, S.J., Bang, K.M., Kim, B., Ziolkowski, P., Jeong, J. and Jin, H. (2022) Adaptive Thermoelectric Cooling System for Energy-Efficient Local and Transient Heat Management. Applied Thermal Engineering, 216, Article 119060.
https://doi.org/10.1016/j.applthermaleng.2022.119060
[24] Buchalik, R., Nowak, G. and Nowak, I. (2022) Comparative Analysis and Optimization of One and Two-Stage Cooling Systems with Thermoelectric Cells with Respect to Supercooling. Energy Conversion and Management, 259, Article 115587.
https://doi.org/10.1016/j.enconman.2022.115587
[25] Ang, E.Y.M., Ng, P.S., Soh, C.B. and Wang, P.C. (2022) Multi-Stage Thermoelectric Coolers for Cooling Wearables. Thermal Science and Engineering Progress, 36, Article 101511.
https://doi.org/10.1016/j.tsep.2022.101511
[26] Luo, D., Zhao, Y., Cao, J., Wu, Z., Yang, X. and Chen, H. (2024) Effective Temperature Control of a Thermoelectric-Based Battery Thermal Management System under Extreme Temperature Conditions. Journal of Energy Storage, 103, Article 114344.
https://doi.org/10.1016/j.est.2024.114344
[27] Wang, N., Tang, J., Shan, H., Jia, H., Peng, R. and Zuo, L. (2023) Efficient Power Conversion Using a PV-PCM-TE System Based on a Long Time Delay Phase Change with Concentrating Heat. IEEE Transactions on Power Electronics, 38, 10729-10738.
https://doi.org/10.1109/tpel.2023.3283301
[28] Kwan, T.H., Wu, X. and Yao, Q. (2020) Complete Implementation of the Combined TEG-TEC Temperature Control and Energy Harvesting System. Control Engineering Practice, 95, Article 104224.
https://doi.org/10.1016/j.conengprac.2019.104224
[29] Wang, N., Liu, Z.X., Ding, C., Zhang, J., Sui, G., Jia, H., et al. (2022) High Efficiency Thermoelectric Temperature Control System with Improved Proportional Integral Differential Algorithm Using Energy Feedback Technique. IEEE Transactions on Industrial Electronics, 69, 5225-5234.
https://doi.org/10.1109/tie.2021.3082462
[30] Kluska, J. and Zabinski, T. (2020) Pid-Like Adaptive Fuzzy Controller Design Based on Absolute Stability Criterion. IEEE Transactions on Fuzzy Systems, 28, 523-533.
https://doi.org/10.1109/tfuzz.2019.2908772

Baidu
map