昼夜节律与睡眠质量的相互关系:机制、影响因素与治疗方法
The Interrelationship Between Circadian Rhythms and Sleep Quality: Mechanisms, Influencing Factors, and Therapeutic Approaches
DOI: 10.12677/ap.2025.154188, PDF, HTML, XML,    科研立项经费支持
作者: 宋 磊, 华梓琪, 阿力亚·阿力木江:乌鲁木齐市第四人民医院中医科,新疆 乌鲁木齐;莫丽德·马拉提:新疆生产建设兵团医院临床心理门诊,新疆 乌鲁木齐;王文斐:新疆医科大学临床医学院,新疆 乌鲁木齐
关键词: 昼夜节律睡眠质量生物钟光疗法褪黑激素睡眠障碍Circadian Rhythm Sleep Quality Biological Clock Light Therapy Melatonin Sleep Disorders
摘要: 本文旨在探讨昼夜节律与睡眠质量的相互关系,并总结基于昼夜节律的治疗方法。通过分析昼夜节律的基本机制及其对睡眠的影响,识别影响昼夜节律同步性的因素,包括环境光照、饮食习惯、运动与体力活动以及社会行为与生活习惯。研究发现,现代生活中的不规律作息、夜班工作、光污染等因素常导致昼夜节律紊乱,引发睡眠问题。基于昼夜节律的治疗方法,以期为解决睡眠障碍提供科学参考。
Abstract: This article aims to explore the interrelationship between circadian rhythms and sleep quality, and to summarize therapeutic approaches based on circadian rhythms. By analyzing the basic mechanisms of circadian rhythms and their impact on sleep, factors that affect the synchronization of circadian rhythms are identified, including environmental light exposure, dietary habits, exercise and physical activity, as well as social behaviors and lifestyle habits. The study found that irregular schedules in modern life, night-shift work, and light pollution often lead to circadian rhythm disruption, causing sleep problems. Circadian rhythm-based therapeutic approaches are presented, with the expectation of providing scientific references for solving sleep disorders.
文章引用:宋磊, 莫丽德·马拉提, 王文斐, 华梓琪, 阿力亚·阿力木江 (2025). 昼夜节律与睡眠质量的相互关系:机制、影响因素与治疗方法. 心理学进展, 15(4), 111-118. https://doi.org/10.12677/ap.2025.154188

1. 引言

睡眠是维持人体健康的重要生理过程,而昼夜节律作为大脑内部控制睡眠和清醒周期的生物时钟,其功能在调节睡眠质量中发挥着核心作用(Mack et al., 2021)。昼夜节律通过大脑中的下丘脑视交叉上核(Suprachiasmatic Nucleus, SCN)和外周生物钟调节生理活动,以保证人体在24小时周期内的正常作息(Hood & Amir, 2017)。

然而,现代生活中的各种因素,如不规律的作息、光污染等,往往导致昼夜节律的紊乱,从而引发一系列睡眠问题。第七次全国人口普查结果显示,我国60岁及以上人口的占比达到18.70% (郭姿乐等,2022),还有一项全国性横断面网络调查,探讨了中国成年人的自我报告睡眠状况及其影响因素,研究发现我国成年人中存在显著的睡眠问题(Zhang et al., 2023a),如何恢复和优化昼夜节律已成为解决睡眠障碍的重要探索方向。

本文将探究昼夜节律与睡眠质量的关联性,并归纳现有研究,旨在为更有效地运用生物钟以调节睡眠质量提供理论参考。

2. 昼夜节律与睡眠质量的相互关系

2.1. 昼夜节律的基本机制

哺乳动物的中央起搏器是SCN,它通过视网膜接受光的信息,来让我们的内部时钟和外面的环境保持同步(Bano-Otalora et al., 2021)。SCN里的昼夜节律钟的主要成分是转录因子CLOCK和BMAL1,它们会结合形成一对到靶基因启动子里面的增强子盒序列,进而激活PER和Cry这些时钟控制基因的转录。随着PER和Cry蛋白的积累并转移至细胞核内,它们会抑制CLOCK-BMAL1复合物的活性,进而抑制自身的转录,形成一个约24小时的反馈机制(Bermúdez-Guzmán et al., 2021; Koch et al., 2022)。除SCN之外,身体里面有很多外围时钟,它们可以调节昼夜的节奏,当然还是会受SCN的影响,而且这些外围时钟还会根据环境因素,比如吃东西的时间和日常运动来调整它们的节奏(Nahmias & Androulakis, 2021; Yamaguchi et al., 2023)。最近的研究发现像肝脏和脂肪这样的地方也有时钟基因,它们的表达是有节奏的,而且是以代谢信号来控制的,这也意味着代谢状态和昼夜节律之间有着复杂的相互作用。昼夜循环的稳定性是保持身体机制正常运作非常重要的(Asher & Sassone-Corsi, 2015)。

昼夜节律的稳定性对于维持生理稳态至关重要,而昼夜节律的干扰(如轮班工作、不规律的睡眠习惯或夜间暴露于人造光)可能导致各种健康问题,包括代谢障碍、情绪障碍和睡眠障碍(Doruk et al., 2020)。总的来说,昼夜的节奏是由很多复杂的分子之间的相互作用来控制的,这个网络让生物体能够适应环境里的一些周期性变化。

2.2. 昼夜节律对睡眠的影响

光遗传学研究发现,SCN中的VIP神经元通过释放血管活性肠肽(Vasoactive Intestinal Peptide, VIP)调控下游GABA能神经元活动,直接抑制睡眠促进区域,协调昼夜节律与睡眠–觉醒周期同步(Collins et al., 2020)。主要功能就是让我们的身体内部过程跟外部的环境一致,特别是和光有关系。早上有光照对重置昼夜节律很有帮助,促进白天的正常社会功能和夜晚入睡(Bano-Otalora et al., 2021)。昼夜节律中断者常遇睡眠质量差和日间嗜睡问题,因为工作时间表与自然昼夜节律不对准,睡眠障碍患病率可能更高(Kontos et al., 2020; Ahn et al., 2024)。对这种自然周期的破坏进而也会导致一系列问题,包括认知缺陷,情绪障碍以及心血管疾病等慢性病的风险增加(Kamat et al., 2023; Yang et al., 2023)。

总体上,光遗传学研究使我们了解了SCN中VIP神经元在昼夜节律调控中的关键作用,这一过程在分子层面实现了昼夜节律与睡眠–觉醒周期的精密同步,体现了生物体内在节律的复杂性。

3. 昼夜节律的调节因素

3.1. 环境光照

一项研究探讨了光信号及黑视蛋白对小鼠睡眠的作用,并且预测了不规律光暴露可能引发的睡眠障碍,此研究为我们提供了关于光照的研究新视角(Hubbard et al., 2021)。

光信号的强度、时序与光谱特性共同作用于昼夜节律系统的振幅与相位调节,其中,光照强度直接影响节律的稳定性,有一个实验是针对啮齿动物的,研究表明,光照特别亮的时候,它们的行为更活跃,体温也更稳定。但是如果光照很低,它们的神经元放电就不太频繁,膜的去极化程度也会变低,这样就会导致它们的昼夜节律的振幅明显减少(Bano-Otalora et al., 2021)。

光照时机的选择具有关键调控价值,昼夜节律相位响应曲线揭示了晨间光照可促进节律相位前移,而夜间光照则引发相位延迟的规律,这种时间依赖性效应为临床光疗提供重要依据(Hou et al., 2022)。

光谱特性对昼夜节律的调控具有多维度特征,即蓝光通过激活SCN内PER1/PER2等核心时钟基因表达,在光同步机制中发挥主导作用。最新研究发现,绿色与橙色光谱同样能调节SCN神经活动,提示节律系统具备更广泛的光谱响应范围(Nagare et al., 2021)。动态光照策略的干预研究进一步证明,模拟自然日光色温变化的照明方案和固定色温光照进行比较,可显著提升昼夜节律振幅,并且改善褪黑素分泌节律(Schoonderwoerd et al., 2022)。

从健康效应角度观察,日间充足的自然光暴露与抑郁症状减轻及睡眠质量提升都呈正相关(Burns et al., 2021),而夜间人工光源暴露是通过抑制褪黑素分泌导致节律失调,进一步增加代谢紊乱、肿瘤发生及神经退行性疾病风险(Delorme et al., 2022; Olejniczak et al., 2021)。

总体来说,当前研究强调需综合考量光照强度、时序、光谱三要素的协同作用,通过调控SCN活动来实现生理节律优化,这一认知对现代人工照明环境下的健康风险防控具有一定的指导价值。

3.2. 饮食习惯

研究证实,如果不规则饮食,则会导致中枢蛋白水平的变化,进而影响下丘脑中的昼夜节律途径并改变食物预期活动(Zhang et al., 2023b)。而且,用餐的频率在保持稳定的昼夜节律中起着至关重要的作用,也就是说,较高的进食频率与少量体重指数和昼夜节律的稳定性相关(Zerón-Rugerio et al., 2021)。相反,长期的高热量食物摄入量,如夜宵,会破坏内源性的昼夜节律,并有助于肥胖和代谢疾病的发展(Begemann & Oster, 2022)。

此外,我们也要注意特定食物类型的时机,比如早上食用红色和橙色蔬菜或发酵乳制品,与患有睡眠障碍患者中心血管疾病的风险降低有关(Zhang et al., 2022)。患有不规则睡眠模式的人出现的慢性昼夜节律破坏会导致不良健康结果,包括肥胖和增加慢性疾病的风险。值得注意的是,当饮食习惯与人体昼夜节律不相符时,如夜间进食,可能会进一步加剧这种昼夜节律的破坏(McHill et al., 2022)。

3.3. 运动与体力活动

与久坐不动的对照组相比,进行约27.5分钟的低强度早晨锻炼能够减缓昼夜节律的延迟现象(Lang et al., 2022)。晚上进行锻炼可能会打乱昼夜节律的自然节奏,这种节奏上的错位可能会使我们入睡和维持规律的睡眠时间表变得困难(Thomas et al., 2020)。然而,值得注意的是,虽然短时间的晚上做运动可能会让褪黑激素的分泌延迟,而且还会让夜间核心体温有所上升,但是看起来这并没有直接对睡眠质量产生直接的负面影响(Kim et al., 2023),这进一步说明,晚上锻炼虽然会对昼夜节律产生一定影响,但并不一定导致睡眠质量下降,影响可能更为复杂。

此外,运动的频率也是影响昼夜节律的重要因素,在几周内始终执行结构化的运动计划可以增强血糖,控制并改善整体代谢反应,而这种效果却与锻炼的特定时间无关(Teo et al., 2020),这表明,保持常规的锻炼程序对于增强人体的昼夜节律具有积极作用。

所以运动的频率、强度以及时间都显著影响着昼夜节律,我们应该综合考虑锻炼程序的时间和性质。通过合理安排锻炼时间和频率,我们可以更好地维护昼夜节律的稳定。

3.4. 社会行为与生活习惯

社会行为、生活习惯与昼夜节律之间的相互作用是一个复杂而有趣的研究领域。相关研究成果表明,社会互动能多方面显著影响昼夜节律,包括活动模式、睡眠、侵略性以及学习行为等。以果蝇为例,尽管常被视作孤立物种,但它在高密度养殖的时候会出现社会同步的现象,通过社交互动,它们的昼夜节律会变得一致。这个现象说明了社会行为可能会对昼夜节律产生影响(Ping et al., 2020)。

在此背景下,我们可以进一步理解昼夜节律卫生的概念,其强调的是将日常活动习惯与自然的昼夜节律保持同步的重要性。与睡眠卫生相比,昼夜节律卫生不仅关注睡眠习惯,还更广泛地考虑了社会结构和个人行为对健康的影响(Trebucq et al., 2023)。值得关注的是,无论是由于生活方式的选择还是环境因素的干扰,对睡眠方式的破坏都可能引发严重的健康问题,包括睡眠障碍以及其他精神障碍的加剧(Baranwal et al., 2023)。在这一领域的持续研究对于发现社会动态和生物节奏相互作用的复杂性非常重要,有助于更好地理解各种物种的个人和集体行为。

4. 基于昼夜节律的睡眠障碍治疗方法

4.1. 光疗法

基于昼夜节律相位响应曲线的个性化光疗方案已成为学者们的研究热点。光线,尤其是短波长(约460~480 nm)的光,其作用因为暴露时间的不同而有所差异:早晨明亮光线暴露有助于提前昼夜节律,对延迟睡眠相障碍个体有益;晚上光线暴露可能引起相位延迟,对晚期睡眠相障碍者有用(Angerer et al., 2022; Youngstedt et al., 2022)。例如,针对各行各业的倒班人员,晨间蓝光滤光镜联合傍晚强光暴露可显著减少昼夜节律失调(Boivin & James, 2002)。

光疗法被很多项研究证实可改善睡眠质量与调节昼夜节律。失眠的随机临床试验显示,与对照组相比,该疗法显著提升了睡眠质量和效率,并且使昏暗光下褪黑激素分泌的起始时间提前了30分钟,这表明光疗法不仅提高了主观睡眠质量,还可以让白天跟夜间的规律和睡眠习惯相互协调(Yoon et al., 2024),此外,光疗法对心理健康也有积极影响,昼夜节律紊乱与抑郁症、焦虑症等精神问题相关,光疗法通过恢复昼夜节律,能减轻这些症状,为睡眠及情绪障碍患者带来双重改善(Atan et al., 2023; Ricketts et al., 2023)。

4.2. 褪黑激素补充

在临床环境中,褪黑激素已被证明能够改善睡眠质量和延长睡眠时间,特别是在与个人昼夜节律相匹配的时间点服用时。根据荟萃分析,褪黑激素在稳态驱动不足的情况下可以增强嗜睡感,并且会抑制昼夜节律起搏器产生的清醒动力的作用(Moon et al., 2022)。

褪黑激素不仅能够有效调整睡眠时间,还展现出显著的促进睡眠、调节睡眠周期以及帮助个体适应非自然睡眠节奏的能力。对于那些因工作调动而需要调整作息的人来说,褪黑激素能辅助他们更顺畅地过渡,减轻因昼夜节律紊乱带来的不适感(Polymeropoulos et al., 2021)。此外,在精神障碍患者中,褪黑激素展现出改善睡眠–觉醒周期的相似疗效,这和在健康个体中的观察结果一致(Li et al., 2023)。

褪黑激素的给药通常被认为是安全的,报道的副作用很少。但是为了获得最佳效果,应该在晚上(准备入睡到真正睡着的时间段,短至30分钟,也可能长达1个小时),与自然的昼夜节律保持一致(Barnes et al., 2023)。剂量可能会有所不同,但通常建议使用较低剂量开始。

综上,补充褪黑激素是通过促进睡眠觉醒周期的调整,提高睡眠质量并解决昼夜节律中潜在的干扰,也是可以考虑到治疗昼夜节律睡眠障碍的临床干预中。

4.3. 认知行为疗法

关于睡眠、精神障碍与认知功能之间的关系,以及认知行为疗法在其中的有效性,近年来已成为广受关注的研究热点(Zhou et al., 2022)。相关研究揭示认知行为疗法是一种多组分的失眠治疗方法,通过睡眠限制、刺激控制、认知重构和睡眠卫生等手段,改善入睡和维持睡眠的困难(Walker et al., 2022)。另一项研究提出了失眠的概念性认知框架,强调失眠的易感性、发作和持续性与认知机制密切相关,负面情绪和失眠的错误认知会加剧睡眠问题,并且强调了其在改善睡眠质量和调节昼夜节律方面的有效性(Vaziri et al., 2021)。

总体而言,认知行为疗法对于解决失眠和相关睡眠障碍问题非常有效。它采用一套系统化的方法,结合了行为调整与认知改变,不仅直接帮助患者改善睡眠,还深入解决那些可能导致失眠持续存在的潜在心理因素,随着对睡眠障碍病理机制的持续深化理解,将药物治疗与认知行为疗法相结合,可能有望进一步提升治疗效果(Shin et al., 2023; Wang et al., 2024; Manolis et al., 2020)。

5. 结论

本文基于昼夜节律的治疗方法,如光疗法、褪黑激素补充和认知行为疗法进行了总结,这些方法分别通过调整昼夜节律,帮助个体恢复正常的睡眠模式,从而改善睡眠质量和整体健康状况,以期尝试解决睡眠障碍提供新的视角。

关于现有研究还是存在一些局限性。比如,个体差异难以精准考量,不同个体的基因、生活方式、心理状态等因素对昼夜节律与睡眠质量的影响存在显著差异,目前的研究难以完全适用于每个个体。部分研究样本量小或存在选择偏倚,不同研究间异质性大,影响了研究结果的普适性。光疗法的实施需考虑光照强度、时序、光谱等多要素的协同作用,但目前对于不同个体的最佳光疗方案尚不明确,而褪黑激素的给药时间、剂量等需要与个体的自然昼夜节律保持一致,目前对于不同人群的精准给药时间和剂量尚缺乏统一标准。未来的研究需要更多的临床研究来验证这些治疗方法的有效性和安全性,并且综合考虑环境光照、饮食习惯、运动与体力活动以及社会行为与生活习惯等因素,可以更好地制定个性化的治疗方案,以满足不同患者的需求。

基金项目

衷心感谢《天王补心丹治疗心不藏神型不寐患者的疗效观察》ZYYQK-01的支持。

参考文献

[1] 郭姿乐, 王振杰, 赵蔓, 陈婷蔚, 等(2022). 中国老年人睡眠障碍患病率的Meta分析. 中国全科医学, 25(16), 2036-2043.
https://qikan.cqvip.com/Qikan/Article/Detail?id=7107109681
[2] Ahn, J., Yeo, H., Lee, S., Hwang, Y., Jeon, S., & Kim, S. J. (2024). Shift Schedules and Circadian Preferences: The Association with Sleep and Mood. Frontiers in Public Health, 12, Article 1283543.
https://doi.org/10.3389/fpubh.2024.1283543
[3] Angerer, M., Pichler, G., Angerer, B., Scarpatetti, M., Schabus, M., & Blume, C. (2022). From Dawn to Dusk—Mimicking Natural Daylight Exposure Improves Circadian Rhythm Entrainment in Patients with Severe Brain Injury. Sleep, 45, zsac065.
https://doi.org/10.1093/sleep/zsac065
[4] Asher, G., & Sassone-Corsi, P. (2015). Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell, 161, 84-92.
https://doi.org/10.1016/j.cell.2015.03.015
[5] Atan, Y. S., Subaşı, M., Güzel Özdemir, P., & Batur, M. (2023). The Effect of Blindness on Biological Rhythms and the Consequences of Circadian Rhythm Disorder. Turkish Journal of Ophthalmology, 53, 111-119.
https://doi.org/10.4274/tjo.galenos.2022.59296
[6] Bano-Otalora, B., Martial, F., Harding, C., Bechtold, D. A., Allen, A. E., Brown, T. M. et al. (2021). Bright Daytime Light Enhances Circadian Amplitude in a Diurnal Mammal. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100094118.
https://doi.org/10.1073/pnas.2100094118
[7] Baranwal, N., Yu, P. K., & Siegel, N. S. (2023). Sleep Physiology, Pathophysiology, and Sleep Hygiene. Progress in Cardiovascular Diseases, 77, 59-69.
https://doi.org/10.1016/j.pcad.2023.02.005
[8] Barnes, G., Bernard, R., Wagner, M., & Berry, R. (2023). Teenager with Sleep and Wakefulness at the Wrong Time. Journal of Clinical Sleep Medicine, 19, 1165-1166.
https://doi.org/10.5664/jcsm.10530
[9] Begemann, K., & Oster, H. (2022). Snack Timing Affects Tissue Clock and Metabolic Responses in Male Mice. Frontiers in Nutrition, 9, Article 956641.
https://doi.org/10.3389/fnut.2022.956641
[10] Bermúdez-Guzmán, L., Blanco-Saborío, A., Ramírez-Zamora, J., & Lovo, E. (2021). The Time for Chronotherapy in Radiation Oncology. Frontiers in Oncology, 11, Article 687672.
https://doi.org/10.3389/fonc.2021.687672
[11] Boivin, D. B., & James, F. O. (2002). Circadian Adaptation to Night-Shift Work by Judicious Light and Darkness Exposure. Journal of Biological Rhythms, 17, 556-567.
https://doi.org/10.1177/0748730402238238
[12] Burns, A. C., Saxena, R., Vetter, C., Phillips, A. J. K., Lane, J. M., & Cain, S. W. (2021). Time Spent in Outdoor Light Is Associated with Mood, Sleep, and Circadian Rhythm-Related Outcomes: A Cross-Sectional and Longitudinal Study in over 400,000 UK Biobank Participants. Journal of Affective Disorders, 295, 347-352.
https://doi.org/10.1016/j.jad.2021.08.056
[13] Collins, B., Pierre-Ferrer, S., Muheim, C., Lukacsovich, D., Cai, Y., Spinnler, A. et al. (2020). Circadian Vipergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron, 108, 486-499.e5.
https://doi.org/10.1016/j.neuron.2020.08.001
[14] Delorme, T. C., Srikanta, S. B., Fisk, A. S., Cloutier, M., Sato, M., Pothecary, C. A. et al. (2022). Chronic Exposure to Dim Light at Night or Irregular Lighting Conditions Impact Circadian Behavior, Motor Coordination, and Neuronal Morphology. Frontiers in Neuroscience, 16, Article 855154.
https://doi.org/10.3389/fnins.2022.855154
[15] Doruk, Y. U., Yarparvar, D., Akyel, Y. K., Gul, S., Taskin, A. C., Yilmaz, F. et al. (2020). A Clock-Binding Small Molecule Disrupts the Interaction between CLOCK and BMAL1 and Enhances Circadian Rhythm Amplitude. Journal of Biological Chemistry, 295, 3518-3531.
https://doi.org/10.1074/jbc.ra119.011332
[16] Hood, S., & Amir, S. (2017). The Aging Clock: Circadian Rhythms and Later Life. Journal of Clinical Investigation, 127, 437-446.
https://doi.org/10.1172/jci90328
[17] Hou, D., Lin, C., & Lin, Y. (2022). Diurnal Circadian Lighting Accumulation Model: A Predictor of the Human Circadian Phase Shift Phenotype. Phenomics, 2, 50-63.
https://doi.org/10.1007/s43657-021-00039-6
[18] Hubbard, J., Kobayashi Frisk, M., Ruppert, E., Tsai, J. W., Fuchs, F., Robin-Choteau, L. et al. (2021). Dissecting and Modeling Photic and Melanopsin Effects to Predict Sleep Disturbances Induced by Irregular Light Exposure in Mice. Proceedings of the National Academy of Sciences of the United States of America, 118, e2017364118.
https://doi.org/10.1073/pnas.2017364118
[19] Kamat, P. K., Khan, M. B., Smith, C., Siddiqui, S., Baban, B., Dhandapani, K. et al. (2023). The Time Dimension to Stroke: Circadian Effects on Stroke Outcomes and Mechanisms. Neurochemistry International, 162, Article ID: 105457.
https://doi.org/10.1016/j.neuint.2022.105457
[20] Kim, N., Ka, S., & Park, J. (2023). Effects of Exercise Timing and Intensity on Physiological Circadian Rhythm and Sleep Quality: A Systematic Review. Physical Activity and Nutrition, 27, 052-063.
https://doi.org/10.20463/pan.2023.0029
[21] Koch, A. A., Bagnall, J. S., Smyllie, N. J., Begley, N., Adamson, A. D., Fribourgh, J. L. et al. (2022). Quantification of Protein Abundance and Interaction Defines a Mechanism for Operation of the Circadian Clock. eLife, 11, e73976.
https://doi.org/10.7554/elife.73976
[22] Kontos, A., Baumert, M., Lushington, K., Kennedy, D., Kohler, M., Cicua-Navarro, D. et al. (2020). The Inconsistent Nature of Heart Rate Variability during Sleep in Normal Children and Adolescents. Frontiers in Cardiovascular Medicine, 7, Article 19.
https://doi.org/10.3389/fcvm.2020.00019
[23] Lang, C., Richardson, C., Short, M. A., & Gradisar, M. (2022). Low-Intensity Scheduled Morning Exercise for Adolescents with a Late Chronotype: A Novel Treatment to Advance Circadian Phase? SLEEP Advances, 3, zpac021.
https://doi.org/10.1093/sleepadvances/zpac021
[24] Li, B., Hsieh, Y., Lai, W., Tung, T., Chen, Y., Yang, C. et al. (2023). Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation. International Journal of Molecular Sciences, 24, Article 16820.
https://doi.org/10.3390/ijms242316820
[25] Mack, K. L., Jaggard, J. B., Persons, J. L., Roback, E. Y., Passow, C. N., Stanhope, B. A. et al. (2021). Repeated Evolution of Circadian Clock Dysregulation in Cavefish Populations. PLOS Genetics, 17, e1009642.
https://doi.org/10.1371/journal.pgen.1009642
[26] Manolis, T. A., Manolis, A. A., Apostolopoulos, E. J., Melita, H., & Manolis, A. S. (2020). Cardiovascular Complications of Sleep Disorders: A Better Night’s Sleep for a Healthier Heart/from Bench to Bedside. Current Vascular Pharmacology, 19, 210-232.
https://doi.org/10.2174/1570161118666200325102411
[27] McHill, A. W., Hull, J. T., & Klerman, E. B. (2022). Chronic Circadian Disruption and Sleep Restriction Influence Subjective Hunger, Appetite, and Food Preference. Nutrients, 14, Article 1800.
https://doi.org/10.3390/nu14091800
[28] Moon, E., Partonen, T., Beaulieu, S., & Linnaranta, O. (2022). Melatonergic Agents Influence the Sleep-Wake and Circadian Rhythms in Healthy and Psychiatric Participants: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neuropsychopharmacology, 47, 1523-1536.
https://doi.org/10.1038/s41386-022-01278-5
[29] Nagare, R., Woo, M., MacNaughton, P., Plitnick, B., Tinianov, B., & Figueiro, M. (2021). Access to Daylight at Home Improves Circadian Alignment, Sleep, and Mental Health in Healthy Adults: A Crossover Study. International Journal of Environmental Research and Public Health, 18, Article 9980.
https://doi.org/10.3390/ijerph18199980
[30] Nahmias, Y., & Androulakis, I. P. (2021). Circadian Effects of Drug Responses. Annual Review of Biomedical Engineering, 23, 203-224.
https://doi.org/10.1146/annurev-bioeng-082120-034725
[31] Olejniczak, I., Ripperger, J. A., Sandrelli, F., Schnell, A., Mansencal-Strittmatter, L., Wendrich, K. et al. (2021). Light Affects Behavioral Despair Involving the Clock Gene Period 1. PLOS Genetics, 17, e1009625.
https://doi.org/10.1371/journal.pgen.1009625
[32] Ping, Y., Shao, L., Li, M., Yang, L., & Zhang, J. (2020). Contribution of Social Influences through Superposition of Visual and Olfactory Inputs to Circadian Re-Entrainment. iScience, 23, Article ID: 100856.
https://doi.org/10.1016/j.isci.2020.100856
[33] Polymeropoulos, C. M., Brooks, J., Czeisler, E. L., Fisher, M. A., Gibson, M. M., Kite, K. et al. (2021). Tasimelteon Safely and Effectively Improves Sleep in Smith-Magenis Syndrome: A Double-Blind Randomized Trial Followed by an Open-Label Extension. Genetics in Medicine, 23, 2426-2432.
https://doi.org/10.1038/s41436-021-01282-y
[34] Ricketts, E. J., Swisher, V., Greene, D. J., Silverman, D., Nofzinger, E. A., & Colwell, C. S. (2023). Sleep Disturbance in Tourette’s Disorder: Potential Underlying Mechanisms. Current Sleep Medicine Reports, 9, 10-22.
https://doi.org/10.1007/s40675-022-00242-5
[35] Schoonderwoerd, R. A., de Rover, M., Janse, J. A. M., Hirschler, L., Willemse, C. R., Scholten, L. et al. (2022). The Photobiology of the Human Circadian Clock. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118803119.
https://doi.org/10.1073/pnas.2118803119
[36] Shin, J., Kim, S., Shin, Y. J., Park, B., & Park, S. (2023). Comparison of Acceptance and Commitment Therapy (ACT) and Cognitive Behavior Therapy (CBT) for Chronic Insomnia: A Pilot Randomized Controlled Trial. Nature and Science of Sleep, 15, 523-531.
https://doi.org/10.2147/nss.s409981
[37] Teo, S. Y. M., Kanaley, J. A., Guelfi, K. J., Marston, K. J., & Fairchild, T. J. (2020). The Effect of Exercise Timing on Glycemic Control: A Randomized Clinical Trial. Medicine & Science in Sports & Exercise, 52, 323-334.
https://doi.org/10.1249/mss.0000000000002139
[38] Thomas, J. M., Kern, P. A., Bush, H. M., McQuerry, K. J., Black, W. S., Clasey, J. L. et al. (2020). Circadian Rhythm Phase Shifts Caused by Timed Exercise Vary with Chronotype. JCI Insight, 5, e134270.
https://doi.org/10.1172/jci.insight.134270
[39] Trebucq, L. L., Lamberti, M. L., Rota, R., Aiello, I., Borio, C., Bilen, M. et al. (2023). Chronic Circadian Desynchronization of Feeding-Fasting Rhythm Generates Alterations in Daily Glycemia, LDL Cholesterolemia and Microbiota Composition in Mice. Frontiers in Nutrition, 10, Article 1154647.
https://doi.org/10.3389/fnut.2023.1154647
[40] Vaziri, Z., Nami, M., Leite, J. P., Delbem, A. C. B., Hyppolito, M. A., & Ghodratitoostani, I. (2021). Conceptual Framework for Insomnia: A Cognitive Model in Practice. Frontiers in Neuroscience, 15, Article 628836.
https://doi.org/10.3389/fnins.2021.628836
[41] Walker, J., Muench, A., Perlis, M. L., & Vargas, I. (2022). Cognitive Behavioral Therapy for Insomnia (CBT-I): A Primer. Clinical Psychology and Special Education, 11, 123-137.
https://doi.org/10.17759/cpse.2022110208
[42] Wang, J., Cheng, G., Li, H., & Yang, W. (2024). Effects of Cognitive Training and Behavior Modification on Aggressive Behavior and Sleep Quality in Schizophrenia. Frontiers in Psychiatry, 15, Article 1363547.
https://doi.org/10.3389/fpsyt.2024.1363547
[43] Yamaguchi, Y., Maekawa, Y., Kabashima, K., Mizuno, T., Tainaka, M., Suzuki, T. et al. (2023). An Intact Pituitary Vasopressin System Is Critical for Building a Robust Circadian Clock in the Suprachiasmatic Nucleus. Proceedings of the National Academy of Sciences of the United States of America, 120, e2308489120.
https://doi.org/10.1073/pnas.2308489120
[44] Yang, P., Chaytor, N. S., Burr, R. L., Kapur, V. K., McCurry, S. M., Vitiello, M. V. et al. (2023). Rest-Activity Rhythm Fragmentation and Weaker Circadian Strength Are Associated with Cognitive Impairment in Survivors of Acute Respiratory Failure. Biological Research for Nursing, 25, 5-13.
https://doi.org/10.1177/10998004221109925
[45] Yoon, J., Heo, S., Lee, H., Sul, E., Han, T., & Kwon, Y. (2024). Assessing the Feasibility and Efficacy of Pre-Sleep Dim Light Therapy for Adults with Insomnia: A Pilot Study. Medicina, 60, Article 632.
https://doi.org/10.3390/medicina60040632
[46] Youngstedt, S. D., Elliott, J., Patel, S., Zi-Ching Mak, N., Raiewski, E., Malek, E. et al. (2022). Circadian Acclimatization of Performance, Sleep, and 6-Sulfatoxymelatonin Using Multiple Phase Shifting Stimuli. Frontiers in Endocrinology, 13, Article 964681.
https://doi.org/10.3389/fendo.2022.964681
[47] Zerón-Rugerio, M. F., Díez-Noguera, A., Izquierdo-Pulido, M., & Cambras, T. (2021). Higher Eating Frequency Is Associated with Lower Adiposity and Robust Circadian Rhythms: A Cross-Sectional Study. The American Journal of Clinical Nutrition, 113, 17-27.
https://doi.org/10.1093/ajcn/nqaa282
[48] Zhang, W., Yu, M., Xu, Y., Li, X., Zuo, H., Huang, Z. et al. (2023a). Self-Reported Sleep Status and Influencing Factors: A Web-Based National Cross-Sectional Survey in China. Annals of Medicine, 55, Article ID: 2287706.
https://doi.org/10.1080/07853890.2023.2287706
[49] Zhang, H., Yan, X., Lin, A., Xia, P., Jia, M., & Su, Y. (2023b). Effect of Feeding Regimen on Circadian Activity Rhythms of Food Anticipatory by Ghrelin Hormone in a Pig Model. Nutritional Neuroscience, 26, 313-331.
https://doi.org/10.1080/1028415x.2022.2047436
[50] Zhang, J., Zhang, Y., Liu, L., Wang, X., Xu, X., Li, Y. et al. (2022). Associations between the Timing of Different Foods’ Consumption with Cardiovascular Disease and All-Cause Mortality among Adults with Sleep Disorders. Frontiers in Nutrition, 9, Article 967996.
https://doi.org/10.3389/fnut.2022.967996
[51] Zhou, J., Qu, J., Ji, S., Bu, Y., Hu, Y., Sun, H. et al. (2022). Research Trends in College Students’ Sleep from 2012 to 2021: A Bibliometric Analysis. Frontiers in Psychiatry, 13, Article 1005459.
https://doi.org/10.3389/fpsyt.2022.1005459

Baidu
map