[1] |
Yoshida, T. and Kojima, K. (2015) Toyota MIRAI Fuel Cell Vehicle and Progress toward a Future Hydrogen Society. The Electrochemical Society Interface, 24, 45-49. https://doi.org/10.1149/2.f03152if |
[2] |
Banham, D. and Ye, S. (2017) Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2, 629-638. https://doi.org/10.1021/acsenergylett.6b00644 |
[3] |
Kongkanand, A. and Mathias, M.F. (2016) The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. The Journal of Physical Chemistry Letters, 7, 1127-1137. https://doi.org/10.1021/acs.jpclett.6b00216 |
[4] |
Zhang, L., Roling, L.T., Wang, X., Vara, M., Chi, M., Liu, J., et al. (2015) Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined, Controllable Facets. Science, 349, 412-416. https://doi.org/10.1126/science.aab0801 |
[5] |
Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., et al. (2014) Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 343, 1339-1343. https://doi.org/10.1126/science.1249061 |
[6] |
Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C., Yu, R., et al. (2016) Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science, 354, 1414-1419. https://doi.org/10.1126/science.aaf9050 |
[7] |
Bu, L., Zhang, N., Guo, S., Zhang, X., Li, J., Yao, J., et al. (2016) Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science, 354, 1410-1414. https://doi.org/10.1126/science.aah6133 |
[8] |
Debe, M.K., Steinbach, A.J., Vernstrom, G.D., Hendricks, S.M., Kurkowski, M.J., Atanasoski, R.T., et al. (2011) Extraordinary Oxygen Reduction Activity of Pt3Ni7. Journal of The Electrochemical Society, 158, B910. https://doi.org/10.1149/1.3595748 |
[9] |
Zhu, H., Zhang, S., Guo, S., Su, D. and Sun, S. (2013) Synthetic Control of FePtM Nanorods (M = Cu, Ni) to Enhance the Oxygen Reduction Reaction. Journal of the American Chemical Society, 135, 7130-7133. https://doi.org/10.1021/ja403041g |
[10] |
Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., et al. (2016) Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nature Communications, 7, Article No. 11850. https://doi.org/10.1038/ncomms11850 |
[11] |
Tian, N., Zhou, Z., Sun, S., Ding, Y. and Wang, Z.L. (2007) Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science, 316, 732-735. https://doi.org/10.1126/science.1140484 |
[12] |
Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P. and Wang, X. (2013) Ultrathin Pt-Cu Nanosheets and Nanocones. Journal of the American Chemical Society, 135, 18304-18307. https://doi.org/10.1021/ja4101968 |
[13] |
Yu, X., Wang, D., Peng, Q. and Li, Y. (2011) High Performance Electrocatalyst: Pt-Cu Hollow Nanocrystals. Chemical Communications, 47, 8094. https://doi.org/10.1039/c1cc12416a |
[14] |
Gilroy, K.D., Ruditskiy, A., Peng, H., Qin, D. and Xia, Y. (2016) Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chemical Reviews, 116, 10414-10472. https://doi.org/10.1021/acs.chemrev.6b00211 |
[15] |
Luo, S., Tang, M., Shen, P.K. and Ye, S. (2017) Atomic‐Scale Preparation of Octopod Nanoframes with High‐Index Facets as Highly Active and Stable Catalysts. Advanced Materials, 29, Article 1601687. https://doi.org/10.1002/adma.201601687 |
[16] |
Peng, X., Zhao, S., Omasta, T.J., Roller, J.M. and Mustain, W.E. (2017) Activity and Durability of Pt-Ni Nanocage Electocatalysts in Proton Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 203, 927-935. https://doi.org/10.1016/j.apcatb.2016.10.081 |
[17] |
He, D.S., He, D., Wang, J., Lin, Y., Yin, P., Hong, X., et al. (2016) Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 138, 1494-1497. https://doi.org/10.1021/jacs.5b12530 |
[18] |
Xia, B.Y., Wu, H.B., Wang, X. and Lou, X.W. (2012) One-Pot Synthesis of Cubic PtCU3 Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 134, 13934-13937. https://doi.org/10.1021/ja3051662 |
[19] |
Yang, X., Roling, L.T., Vara, M., Elnabawy, A.O., Zhao, M., Hood, Z.D., et al. (2016) Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 16, 6644-6649. https://doi.org/10.1021/acs.nanolett.6b03395 |
[20] |
Wang, X., Figueroa-Cosme, L., Yang, X., Luo, M., Liu, J., Xie, Z., et al. (2016) Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction. Nano Letters, 16, 1467-1471. https://doi.org/10.1021/acs.nanolett.5b05140 |
[21] |
Chen, W., Luo, S., Sun, M., Wu, X., Zhou, Y., Liao, Y., et al. (2022) High‐Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. Advanced Materials, 34, Article 2206276. https://doi.org/10.1002/adma.202206276 |
[22] |
Fan, X., Chen, W., Xie, L., Liu, X., Ding, Y., Zhang, L., et al. (2024) Surface‐Enriched Single‐Bi‐Atoms Tailoring of Pt Nanorings for Direct Methanol Fuel Cells with Ultralow‐Pt‐Loading. Advanced Materials, 36, Article 2313179. https://doi.org/10.1002/adma.202313179 |
[23] |
Tang, M., Sun, M., Chen, W., Ding, Y., Fan, X., Wu, X., et al. (2024) Atomic Diffusion Engineered PtSnCu Nanoframes with High‐Index Facets Boost Ethanol Oxidation. Advanced Materials, 36, Article 2311731. https://doi.org/10.1002/adma.202311731 |
[24] |
Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., et al. (2013) Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nature Materials, 12, 81-87. https://doi.org/10.1038/nmat3458 |
[25] |
Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., et al. (2007) Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 315, 493-497. https://doi.org/10.1126/science.1135941 |
[26] |
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., et al. (2010) Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry, 2, 454-460. https://doi.org/10.1038/nchem.623 |
[27] |
Noh, S.H., Han, B. and Ohsaka, T. (2015) First-Principles Computational Study of Highly Stable and Active Ternary Ptcuni Nanocatalyst for Oxygen Reduction Reaction. Nano Research, 8, 3394-3403. https://doi.org/10.1007/s12274-015-0839-2 |
[28] |
Beermann, V., Gocyla, M., Willinger, E., Rudi, S., Heggen, M., Dunin-Borkowski, R.E., et al. (2016) Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Nano Letters, 16, 1719-1725. https://doi.org/10.1021/acs.nanolett.5b04636 |
[29] |
Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., et al. (2015) One-Pot Synthesis of Ternary Pt-Ni-Cu Nanocrystals with High Catalytic Performance. Chemistry of Materials, 27, 6402-6410. https://doi.org/10.1021/acs.chemmater.5b02575 |
[30] |
Saleem, F., Ni, B., Yong, Y., Gu, L. and Wang, X. (2016) Ultra-Small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. Small, 12, 5261-5268. https://doi.org/10.1002/smll.201601299 |
[31] |
Gan, L., Cui, C., Heggen, M., Dionigi, F., Rudi, S. and Strasser, P. (2014) Element-Specific Anisotropic Growth of Shaped Platinum Alloy Nanocrystals. Science, 346, 1502-1506. https://doi.org/10.1126/science.1261212 |
[32] |
Cui, C., Gan, L., Heggen, M., Rudi, S. and Strasser, P. (2013) Compositional Segregation in Shaped Pt Alloy Nanoparticles and Their Structural Behaviour during Electrocatalysis. Nature Materials, 12, 765-771. https://doi.org/10.1038/nmat3668 |
[33] |
Carpenter, M.K., Moylan, T.E., Kukreja, R.S., Atwan, M.H. and Tessema, M.M. (2012) Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 134, 8535-8542. https://doi.org/10.1021/ja300756y |
[34] |
Muzart, J. (2009) N,N-Dimethylformamide: Much More than a Solvent. Tetrahedron, 65, 8313-8323. https://doi.org/10.1016/j.tet.2009.06.091 |
[35] |
Bai, S., Wang, C., Jiang, W., Du, N., Li, J., Du, J., et al. (2015) Etching Approach to Hybrid Structures of PtPd Nanocages and Graphene for Efficient Oxygen Reduction Reaction Catalysts. Nano Research, 8, 2789-2799. https://doi.org/10.1007/s12274-015-0770-6 |
[36] |
Kang, Y., Snyder, J., Chi, M., Li, D., More, K.L., Markovic, N.M., et al. (2014) Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Letters, 14, 6361-6367. https://doi.org/10.1021/nl5028205 |
[37] |
Wang, K., Sriphathoorat, R., Luo, S., Tang, M., Du, H. and Shen, P.K. (2016) Ultrathin PtCu Hexapod Nanocrystals with Enhanced Catalytic Performance for Electro-Oxidation Reactions. Journal of Materials Chemistry A, 4, 13425-13430. https://doi.org/10.1039/c6ta05230d |
[38] |
Mourdikoudis, S. and Liz-Marzán, L.M. (2013) Oleylamine in Nanoparticle Synthesis. Chemistry of Materials, 25, 1465-1476. https://doi.org/10.1021/cm4000476 |
[39] |
Kong, F., Liu, S., Li, J., Du, L., Banis, M.N., Zhang, L., et al. (2019) Trimetallic Pt-Pd-Ni Octahedral Nanocages with Subnanometer Thick-Wall towards High Oxygen Reduction Reaction. Nano Energy, 64, Article 103890. https://doi.org/10.1016/j.nanoen.2019.103890 |
[40] |
Tian, X., Zhao, X., Su, Y., Wang, L., Wang, H., Dang, D., et al. (2019) Engineering Bunched Pt-Ni Alloy Nanocages for Efficient Oxygen Reduction in Practical Fuel Cells. Science, 366, 850-856. https://doi.org/10.1126/science.aaw7493 |
[41] |
Zhu, J., Chen, Z., Xie, M., Lyu, Z., Chi, M., Mavrikakis, M., et al. (2019) Iridium‐Based Cubic Nanocages with 1.1‐nm‐Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angewandte Chemie International Edition, 58, 7244-7248. https://doi.org/10.1002/anie.201901732 |
[42] |
Zhu, J., Xie, M., Chen, Z., Lyu, Z., Chi, M., Jin, W., et al. (2020) Pt‐Ir‐Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Advanced Energy Materials, 10, Article 1904114. https://doi.org/10.1002/aenm.201904114 |
[43] |
Zhu, J., Xu, L., Lyu, Z., Xie, M., Chen, R., Jin, W., et al. (2021) Janus Nanocages of Platinum‐Group Metals and Their Use as Effective Dual‐Electrocatalysts. Angewandte Chemie International Edition, 60, 10384-10392. https://doi.org/10.1002/anie.202102275 |
[44] |
Zheng, Y., Petersen, A.S., Wan, H., Hübner, R., Zhang, J., Wang, J., et al. (2023) Scalable and Controllable Synthesis of Pt‐Ni Bunched‐Nanocages Aerogels as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 13, Article 2204257. https://doi.org/10.1002/aenm.202204257 |
[45] |
Ding, H., Su, C., Wu, J., Lv, H., Tan, Y., Tai, X., et al. (2024) Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. Journal of the American Chemical Society, 146, 7858-7867. https://doi.org/10.1021/jacs.4c01379 |
[46] |
Mahmoud, M.A., Saira, F. and El-Sayed, M.A. (2010) Experimental Evidence for the Nanocage Effect in Catalysis with Hollow Nanoparticles. Nano Letters, 10, 3764-3769. https://doi.org/10.1021/nl102497u |