Pt-Ni-Cu纳米笼的合成与高效氧还原电催化
Synthesis of Pt-Ni-Cu Nanocages for Efficient Oxygen Reduction Electrocatalysis
DOI: 10.12677/ms.2025.154060, PDF, HTML, XML,   
作者: 谢 磊*, 罗水平, 朱金良:广西大学资源环境与材料学院有色金属与材料新加工技术教育部重点实验室,广西 南宁
关键词: 纳米笼PtNiCu三元合金氧还原反应电催化Nanocage PtNiCu Ternary Alloy Oxygen Reduction Reaction Electrocatalysis
摘要: 控制Pt基纳米材料的表面、形状和组成可显著提升氧还原反应的催化性能。由超薄纳米片构成的基于Pt的纳米笼,作为一种新型高效催化剂,具有较高的Pt原子利用率。然而,如何通过简单策略设计多金属纳米笼以扩展催化剂的组成空间仍然是一个挑战。在此,我们提出将溶剂热合成法与室温下的保形腐蚀相结合,实现了壁厚仅为7原子层的Pt-Ni-Cu三元纳米笼的合成。此外,通过调控表面活性剂,能有效控制Pt-Ni-Cu三元纳米笼的结构。由于其独特的结构与组成,Pt-Ni-Cu三元纳米笼在氧还原反应(ORR)中展现出优异的质量活性,0.9 V时质量活性为1411 mA·mg Pt −1,是商业Pt/C催化剂的9.0倍,优于近期报道的Pt基纳米笼。
Abstract: Controlling the surface, shape, and composition of Pt-based nanomaterials can greatly boost oxygen reduction catalysis. Pt-based nanocages composed of ultrathin nanosheets have emerged as a new class of efficient catalysts with high atomic utilization efficiency of Pt. However, engineering multimetallic nanocages via facile strategies still remains a challenge to extend compositional space for catalyst development. Here, this work achieves the synthesis of Pt-Ni-Cu ternary nanocages with walls as thin as 7 atomic layers, by developing a general strategy that combines the solvothermal synthesis of highly composition segregated nanocrystals with the conformal corrosion at room temperature. In addition, the structure of Pt-Ni-Cu ternary nanocages can be well controlled by simply changing the surfactants. Benefiting from their unique structure and composition, the Pt-Ni-Cu ternary nanocages exhibit superior mass activity towards oxygen reduction reaction (ORR), with a value of 1411 mA·mg Pt −1 at 0.9 V, which is 9.0 times higher than that of commercial Pt/C catalyst and outperforms the recently reported Pt-based nanocages.
文章引用:谢磊, 罗水平, 朱金良. Pt-Ni-Cu纳米笼的合成与高效氧还原电催化[J]. 材料科学, 2025, 15(4): 550-561. https://doi.org/10.12677/ms.2025.154060

1. 引言

铂(Pt)是质子交换膜燃料电池(PEMFCs)中的关键材料。然而,贵金属Pt资源的稀缺性和有限的催化性能,限制了PEMFCs在汽车领域的广泛应用。因此,提高Pt在氧还原反应(ORR)中的催化性能仍然是一个亟待解决的问题[1]-[3]。精准控制Pt纳米晶体(NCs)结构是提升氧还原反应(ORR)催化性能的常见策略[4]-[13]。尤其是纳米框架和纳米笼,因其优异的原子利用率和独特的结构特性,受到了广泛关注[14]-[20]。例如,Yang等报道了多面体Pt3Ni纳米框架的合成,Xia等报道了Pt纳米笼的制备。这些研究表明,Pt纳米框架和纳米笼在ORR中展现出优异的催化性能,具有成为高效电催化剂的巨大潜力[4] [5]。然而,如何通过简单策略精确控制纳米结构,仍然是一个具有挑战性的问题。在之前的研究中,我们通过一种通用策略实现了多种Pt基纳米框架的一锅法合成[15] [21]-[23]。然而,Pt基纳米笼的通用合成仍存在许多困难:均匀种子的合成、Pt的保形沉积以及内核的选择性腐蚀等复杂步骤。此外,使用Pt (acac)2作为前驱体和贵金属Pd纳米晶体作为模板,会大幅提高电催化剂的成本[4]。因此,探索简便且通用的策略以合成结构均匀、性能优异的Pt纳米笼,具有重要的研究意义。

提高催化性能的另一种策略是优化Pt基纳米晶体(NCs)的组成。二元合金PtNi、PtCo和PtCu被广泛研究,且在氧还原反应中它们的催化性能得到显著提升[24]-[26]。Pt基多金属纳米晶体通过电子/配体效应、应变效应或协同效应,可显著提高Pt的固有活性。与二元合金相比,Pt基三元合金具有更多可调变量,为大幅提高催化性能提供了机会,并为结构–组成–性能关系的研究提供了新的见解[9] [27]-[30]。因此,简化Pt基纳米笼的合成并精确控制其组成具有重要意义。

本文通过简单的溶剂热合成和室温保形腐蚀,合成具有7原子层的超薄壁三元Pt-Ni-Cu纳米笼。通过改变表面活性剂,能轻松调控三元Pt-Ni-Cu纳米笼的形状:以双十二烷基二甲基溴化铵(DDAB)为表面活性剂可得到多面体Pt-Ni-Cu纳米笼(Pt-Ni-Cu PNCs),以十六烷基三甲基氯化铵(CTAC)为表面活性剂可得到多层级Pt-Ni-Cu纳米笼(Pt-Ni-Cu HNCs)。其中,Pt-Ni-Cu PNCs的质量活性高达1411 mA·mgPt1,是商用Pt/C催化剂的9.0倍。在经过10,000次电位循环后,Pt-Ni-Cu PNCs的催化活性和结构仍保持良好。

2. 实验部分

2.1. 化学试剂

六水氯铂酸(H2PtCl6·6H2O)、乙酰丙酮镍(Ni (acac)2, 95%)、乙酰丙酮铜(Cu (acac)2, 97%)、油胺(OAM, 80%~90%)、N,N-二甲基甲酰胺(DMF, 99.9%)、十六烷基三甲基氯化铵(CTAC, 97%)和双十二烷基二甲基溴化铵(DDAB, 98%)购自Aladdin。所有的化学物质均按收到的原样使用未进行纯化。所有实验中使用的水均为超纯水(18.2 MΩ)。

2.2. Pt-Ni-Cu多面体纳米笼的合成

Pt-Ni-Cu多面体纳米笼的合成:将350 mg DDAB、69.2 mg Cu (acac)2和13.6 mg Ni (acac)2加入到含有9 mL OAM和1 mL DMF的25 mL聚四氟乙烯反应釜中。加入26.7 mg H2PtCl6·6H2O前先搅拌10 min,而后再搅拌10 min。将高压反应釜密封在不锈钢中,转移到油浴中,温度保持在170℃,磁力适度搅拌。反应24 h后自然冷却至室温,通过离心(3500 rpm, 5 min)使用正己烷收集产物。而后,将得到的纳米晶体分散到10 mL DMF溶液中,然后加入0.8 mL HCl。在室温下超声(100 W)处理1 h后,离心收集产物,用乙醇洗涤,最后分散在正己烷中备用。

2.3. Pt-Ni-Cu层状纳米笼的合成

将350 mg CTAC,69.2 mg Cu (acac)2和3.6 mg Ni (acac)2加入到含有9 mL OAM和1 mL DMF的25 mL聚四氟乙烯反应釜中。剩下的合成工艺与Pt-Ni-Cu多面体纳米笼的标准合成工艺相同。

2.4. 材料表征

使用日本的D/Max-IIIA (Rigaku Co., Japan) X-射线衍射仪,采用Cu-Kα辐射得到X射线衍射(XRD)图。Tecnai G2 Spirit和Tecnai G2 F30分别在120千伏和300千伏电压下进行测试得到透射电子显微镜(TEM)图像。高分辨率透射电子显微镜(HRTEM)、高角环形暗场扫描透射电子显微镜(HAADF-STEM)和能谱映射图像均在配备图像校正器和高灵敏度Super-X能谱分析X射线(EDX)探测器系统的Titan G2 60-300上获取。TEM表征的样品的制备方法:将分散在正己烷中的纳米晶体滴在碳包覆的Mo网上。采用电感耦合等离子体原子发射光谱(TJA RADIAL IRIS 1000 ICP-AES, USA)测定催化剂的负载。

2.5. 电化学测试

将合成的纳米笼颗粒分散在商用碳载体(Cabot, Vulcant-72)上,而后通过正丁胺与有机表面活性剂进行长链分子配体交换,最后在200℃空气中退火1 h来去除。对比样采用日本TKK公司的商用Pt/C催化剂。将负载碳的催化剂与1.8 mL乙醇和200 µL 0.5 wt.% Nafion溶液进行混合,超声30 min,得到催化剂墨水。用移液枪取一定体积的催化剂滴至玻碳电极表面,干燥后形成均匀的薄膜。电催化剂的Pt负载在0.2475 cm2的几何电极面积上归一化,并通过ICP-AES测定。Pt-Ni-Cu PNC、Pt-Ni-Cu HNCs和TKK-Pt/C的Pt负载分别为6.75 µg·cm2、6.83 µg·cm2和13.70 µg·cm2

电化学测试在三口池中进行,其中Pine旋转圆盘电极(RDE)与双恒电位仪(AFCBP1E, Pine Instrument Co., USA)连接。覆有催化剂的玻碳电极(GC)作为工作电极,可逆氢电极(RHE)作为参比电极,Pt片作为对电极。在N2饱和的0.1 M HClO4溶液中,扫描速率为50 mV·s1,得到循环伏安(CV)曲线。在O2饱和的0.1 M HClO4溶液中,1600 rpm的旋转速度,10 mV·s1的扫描速率下,得到ORR极化曲线。在O2饱和的0.1 M HClO4溶液中,0.6~1.0 V vs. RHE的电位区间,以及100 mV·s1扫描速率下,进行了10,000次加速耐久性试验(ADTs)。

3. 结果与讨论

我们的配方通过使用OAM和二甲基甲酰胺(DMF)的混合溶液作为溶剂和还原剂进行合理设计。之前的研究工作表明,OAM能够诱导形成元素分离的Pt-Cu八面体纳米结构,其中Cu原子集中在核心区域。而当添加较高浓度的表面活性剂和Cu前驱体时,DMF作为溶剂和还原剂有助于形成元素分离的Pt-Ni多面体,其中Ni原子集中在{111}面,Pt原子则集中在边缘[31] [32]。此外,在OAM溶剂中加入DMF不仅有助于前驱体在室温下均匀混合,还能增强其在较低温度下的还原能力[33] [34]

3.1. Pt-Ni-Cu三元纳米笼的设计与合成路线

图1展示了三元Pt-Ni-Cu纳米笼的可调合成过程。第一步将H2PtCl6·6H2O、Cu (acac)2、Ni (acac)2和表面活性剂(DDAB或CTAC)溶解在OAM + DMF混合溶液中,一锅法反应得到Pt、Ni、Cu三元素异相分布的核壳结构纳米晶,该过程分为两个阶段:首先由于铜的欠电位沉积,早期阶段选择性生长出具有富铜核心的立方形纳米晶体(NCs) [13] [15];然后由于异质纳米晶体(NCs)的各向异性生长、金属原子的沉积/扩散/生长过程以及台阶诱导的富Ni相沉积,这些因素主导了过程的进行[31]。第二步通过室温超声辅助酸蚀法将Pt-Ni-Cu核壳纳米晶体中多余的Ni和Cu原子去除,得到保形的三元Pt-Ni-Cu合金纳米笼。特别的,在反应过程中加入的表面活性剂中含有卤素离子,纳米晶被氧化腐蚀。且在形成纳米笼和纳米盒的过程中,腐蚀通常从小孔处开始,并逐渐引发内部和外部原子的腐蚀[35]

Figure 1. Schematic illustration of the tunable synthesis of ternary Pt-Ni-Cu nanocages

1. 三元Pt-Ni-Cu纳米笼的可调合成示意图

3.2. 多面体Pt-Ni-Cu三元纳米笼的制备与表征

Figure 2. (a) The TEM image and (b) EDX spectrum of the initial polyhedral Pt-Ni-Cu core-shell nanocrystals

2. (a) 初始多面体Pt-Ni-Cu核壳纳米晶体的TEM图像和(b) EDX光谱

采用DDAB作为表面活性剂时,合成得到的产物为Pt-Ni-Cu多面体纳米笼(Pt-Ni-Cu PNCs)。图2(a)展示了通过一锅溶剂热法合成的产物的透射电子显微镜(TEM)图像。根据图像中可以看出,纳米晶体为多面体结构,且大小均一、分布均匀。根据图2(b)所示的能谱(EDX)分析可知:纳米晶体的组成为Pt/Ni/Cu = 15.7/10.7/73.6,与前驱体的投料比接近,这表明几乎所有前驱体在反应过程中都被还原。图3展示了固体纳米晶体的能谱元素线扫描分析结果和能谱元素含量分析结果,表明该多面体元素分布均匀,结构为核壳结构(Cu富核心/Ni富中间层/Pt富外壳) [36]。特别地,图2(a)中的一些纳米晶体为空心多面体,这可能是由于溶剂热合成体系中Br/O2的氧化蚀刻作用引起的核心壳纳米晶体的形成。

Figure 3. (a) The HAADF-STEM image, (b) EDX line-scanning profile and (c) EDX mapping images of the initial polyhedral Pt-Ni-Cu core-shell nanocrystals

3. (a) HAADF-STEM图像 (b) EDX线扫描轮廓和 (c) 初始多面体Pt-Ni-Cu核壳纳米晶体的EDX映射图像

Figure 4. (a) TEM image of the polyhedral Pt-Ni-Cu ternary nanocages; (b) HAADF-STEM image of the polyhedral Pt-Ni-Cu ternary nanocages; (c) HRTEM image of the polyhedral Pt-Ni-Cu ternary nanocages; (d) HAADF-STEM and EDX mapping images of single polyhedral Pt-Ni-Cu ternary nanocage. Scale bar 10 nm

4. (a) 多面体Pt-Ni-Cu三元纳米笼的TEM图像;(b) 多面体Pt-Ni-Cu三元纳米笼的HAADF-STEM图像;(c) 多面体Pt-Ni-Cu三元纳米笼的HRTEM图像;(d) 单个多面体Pt-Ni-Cu三元纳米笼的HAADF-STEM和EDX图谱。比例尺为10 nm

图4展示了通过刻蚀固体纳米体后得到的纳米笼的透射电子显微镜(TEM)表征结果。TEM和HAADF-STEM图像表明,纳米笼在分散液中仍保持良好的尺寸和形状,展示出核壳结构的保形腐蚀。EDS-mapping显示Pt、Ni、Cu元素在纳米笼中均匀分布。高分辨透射电镜图(HRTEM)显示(图4(c)):Pt-Ni-Cu纳米笼的壁厚为7原子层,具有孪晶界且晶格间距为0.23 nm,符合面心立方Pt的{111}面特征,且在Pt-Ni-Cu纳米笼的璧上可见到0.8 nm宽的小孔。图5的EDX和XRD图谱表明,Pt-Ni-Cu纳米笼为单相合金,组成为Pt/Ni/Cu = 47.7/8.1/44.2。

Figure 5. (a) The EDX spectrum and (b) XRD pattern of the Pt-Ni-Cu PNCs

5. (a) Pt-Ni-Cu PNCs的EDX光谱和(b) XRD图

3.3. 多层级Pt-Ni-Cu三元纳米笼的制备与表征

在配方中加入CTAC作为表面活性剂,得到产率较高的多层级Pt-Ni-Cu纳米笼(Pt-Ni-Cu HNCs)。如图6(a)所示,通过一锅溶剂热法合成得到的NCs为实心的八角纳米晶体结构,其边长为25 nm,成分为Pt/Ni/Cu = 16.0/14.0/70.0。图6(b)为EDX映射图像,表明实体八角NCs是复杂的核–壳纳米结构。

图6(c)图6(d)显示了通过蚀刻图6(a)所示的NCs得到的产品的TEM表征。TEM和HAADF-STEM图像显示,所获得的NCs具有超薄壁的分层纳米笼(纳米笼中的纳米笼) (图6(d))。根据EDS-mapping可知Pt、Ni、Cu元素在分层纳米笼中均匀分布。

3.4. Pt-Ni-Cu三元纳米笼的形成机理研究

本工作的亮点是通过一锅法合成元素高度分离的Pt-Ni-Cu核壳NCs。为了解该核壳NCs的形成机理,对Pt-Ni-Cu核壳多面体合成过程中不同阶段得到的产物进行了分析。由图7(a)图7(b)可知,经过1小时反应和腐蚀后,NCs为立方纳米笼,其组成为Pt/Cu = 47.6/52.4,早期NCs中未发现Ni元素,结果与我们的合成设计一致:即通过引入OAM和高浓度的铜前驱体,Cu离子比Pt元素更早被还原。如图7(c)图7(d)所示,经过6小时反应和腐蚀后,纳米晶体呈现多面体纳米笼结构,具有凸面和角,这些结构是由金属原子在初始纳米立方体上沉积、扩散和生长形成的。能谱(EDX)图谱显示,多面体纳米笼的组成为Pt/Ni/Cu = 34.8/23.6/41.6,表明Ni原子在后期被沉积到纳米晶体中。特别地,能谱图中清晰地发现了溴离子的信号(图7(b)图7(d)),这表明表面活性剂通过吸附在特定金属晶面上调节了纳米笼的形状[37]

OAM和DMF是制备Pt基纳米晶体(NCs)中最常用的有机溶剂和还原剂[33] [34] [38]。混合溶液中所包含的9 mL OAM和1 mL DMF是形成Pt-Ni-Cu三元纳米笼结构的关键。图8展示了使用不同比例OAM和DMF溶液得到的产物的透射电子显微镜(TEM)图像。当仅使用OAM作为溶剂和还原剂时,所得产物为具有不同尺寸的八角纳米结构(图8(a)),而八角纳米晶体经过腐蚀后转变为相应形貌的纳米笼(图8(b))。

Figure 6. (a) The HAADF-STEM image of hierarchical Pt-Ni-Cu nanocrystals before etching; (b) EDX mapping images of hierarchical Pt-Ni-Cu nanocrystals; (c) HAADF-STEM image of the hierarchical Pt-Ni-Cu ternary nanocages; (d) TEM and EDX mapping images of single hierarchical Pt-Ni-Cu ternary nanocage. Scale bar 20 nm

6. (a) 蚀刻前多层级Pt-Ni-Cu纳米晶体的HAADF-STEM图像;(b) 多层级Pt-Ni-Cu纳米晶体的能谱映射图像;(c) 多层级Pt-Ni-Cu三元纳米笼的HAADF-STEM图像;(d) 单个多层级Pt-Ni-Cu三元纳米笼的TEM和EDX图谱。比例尺为20 nm

Figure 7. (a) TEM image and (b) EDX spectrum of the nanocrystals obtained after 1 h reaction and corrosion, (c) TEM image and (d) EDX spectrum of the nanocrystals obtained after 6 h reaction and corrosion

7. (a) 反应和腐蚀1h后纳米晶的TEM图像和(b) EDX光谱,(c) 反应和腐蚀6 h后纳米晶的TEM图像和(d) EDX光谱

这意味着OAM能够促进核–壳八角纳米结构的形成。当仅使用DMF作为溶剂和还原剂时,可以得到不同尺寸的纳米颗粒(图8(c)),蚀刻后的产物仍然是纳米颗粒(图8(d))。结果表明,在170℃时,DMF的还原能力较强,形成实心多面体,而不形成核壳纳米结构[33]。此外,如果以5 mL OAM和5 mL DMF混合溶液作为溶剂和还原剂,产物为不均匀NCs(图8(e)),实心多面体经腐蚀后可变成相应形貌的纳米笼(图8(f))。

此外,纳米笼的结构可以通过调节配方中的表面活性剂来控制。我们已经证明,使用350 mg DDAB或CTAC作为表面活性剂,可以形成形态各异且均匀的纳米笼。如图9(a)所示,当仅添加50 mg DDAB时,所获得的纳米笼在尺寸和形态上不均匀。如图9(b)所示,当DDAB被氯化钾(KBr)替代时,获得了具有多枝结构的层次化纳米笼。

化学蚀刻是制备空心纳米结构、纳米框或纳米笼的常用方法。在我们的实验中,在室温下通过简单的超声辅助酸蚀可以快速获得三元纳米笼。从图10(a)图10(b)中可以看出,腐蚀10分钟后,大部分固体核壳NCs转化为纳米笼,腐蚀30分钟后,几乎所有的纳米颗粒都被腐蚀成纳米笼。如图10(c)所示,在蚀刻2小时后,多面体Pt-Ni-Cu三元纳米笼的结构保持良好,其组成为Pt/Ni/Cu = 54.3/6.7/39.0。另外,随着腐蚀时间的增加,纳米笼的壁厚变薄,中空的纳米笼更加明显。

Figure 8. TEM images of the nanocrystals obtained (a) before and (b) after acid etching, when using 10 mL OAM as solvent. TEM images of the nanocrystals obtained (c) before and (d) after acid etching, when using 10 mL DMF as solvent. TEM images of the nanocrystals obtained (e) before and (f) after acid etching, when using 5 mL OAM and 5 mL DMF as solvent

8. 以10 mL OAM为溶剂,酸蚀前(a) 和酸蚀后(b) 纳米晶体的TEM图像。以10 mL DMF为溶剂,酸蚀前(c)和酸蚀后(d) 纳米晶体的TEM图像。以5 mL OAM和5 mL DMF为溶剂,酸蚀前(e) 和酸蚀后(f) 纳米晶体的TEM图像

Figure 9. TEM images of the nanocrystals obtained by using different surfactants: (a) 50 mg CTAC; (b) 90 mg KBr

9. 使用不同表面活性剂获得的纳米晶体的TEM图像:(a) 50 mg CTAC;(b) 90 mg KBr

3.5. 电化学性能测试

Pt-Ni和Pt-Cu二元NCs在氧还原反应(ORR)中表现出高效的催化活性[25] [26]。因此我们研究了三元Pt-Ni-Cu纳米笼的ORR催化性能(图11)。将纳米笼负载于碳载体上,并通过正丁胺交换长链分子的配体,随后在200℃的空气中退火。我们使用商用Pt/C (TKK,日本)催化剂进行比较。根据循环伏安法(CV)曲线上收集的氢脱附区(0.05~0.40 V)的电荷,计算了不同催化剂的电化学活性表面积(ECSA)。Pt-Ni-CuPNCs和Pt-Ni-Cu HNCs的ECSA分别为44.8和39.1 m2·gPt1,接近于PtNi纳米框架(44.2 m2·gPt1)和壁厚为7原子层的Pt八面体纳米笼(38.2 m2·gPt1),表明Pt-Ni-Cu纳米笼具有较高的Pt原子利用效率。

Figure 10. TEM images of the nanocrystals obtained after different corrosion time: (a) 10 min; (b) 30 min; (c) 2 h

10. 不同腐蚀时间后纳米晶的TEM图像:(a) 10分钟;(b) 30分钟;(c) 2小时

Figure 11. (a) ORR polarization curves of Pt-Ni-Cu PNCs, Pt-Ni-Cu HNCs and TKK-Pt/C catalysts recorded at 10 mV·s−1. (b) ORR polarization curves of the Pt-Ni-Cu PNCs and TKK-Pt/C catalyst before and after 10,000 potential cycles. (c) ECSAs, specific activity and mass activity at 0.9 V vs. RHE of different catalysts. The values of ECSA (38.2 m2·g1), specific activity (1.98 mA·cm2) and mass activity (750 mA·mgPt1) for Pt octahedral nanocages are reported in reference [4]

11. (a) 10 mV·s−1下Pt-Ni-Cu PNCs、Pt-Ni-Cu HNCs和TKK-Pt/C催化剂的ORR极化曲线。(b) Pt-Ni-Cu PNCs和TKK-Pt/C催化剂在10,000个电位循环前后的ORR极化曲线。(c) 不同催化剂在0.9 V下的比活性和质量活性。Pt八面体纳米笼的ECSA值(38.2 m2·g1)、比活性(1.98 mA·cm2)和质量活性(750 mA·mgPt1) [4]

图11(a)显示了在O2饱和的0.1 M HClO4电解液中,扫描速率为10 mV·s1时不同催化剂的ORR极化曲线。Pt-Ni-Cu PNCs和Pt-Ni-Cu HNCs表现出比TKK-Pt/C更优异的催化活性,其半波电位相较于TKK-Pt/C正移了57 mV。此外,Pt-Ni-Cu PNC在0.9 V下表现出优异的质量活性(1411 mA·mgPt1)和比活性(3.15 mA·cm2),分别是TKK-Pt/C的9.0倍和10.9倍。且其电催化性能优异于Pt八面体纳米笼:质量活性(750 mA·mg1和1.98 mA·cm2) [4] [17] [39]-[45]。在0.9 V下,Pt-Ni-Cu HNCs的质量活性为1278 mA·mgPt1,比活性为3.27 mA·cm2,分别是TKK-Pt/C的8.2倍和11.3倍。三元Pt-Ni-Cu纳米笼的催化活性增强,可能是由于其独特的纳米结构和高原子利用率,以及Pt、Ni和Cu组分之间的协同作用[4] [46]。亚表层中的Ni和Cu原子可以改变以Pt表面原子电子结构,导致中间产物在催化剂上的吸附较弱,从而加速ORR [25]

随后,我们通过加速耐久性测试(ADT),在0.6~1.0 V之间进行10,000次电位循环,评估了Pt-Ni-Cu PNCs的稳定性。如图10(b)所示,ADT后,Pt-Ni-Cu PNCs的半波电位仅负移8 mV,而TKK-Pt/C则负移了38 mV。此外,ADT后,Pt-Ni-Cu PNCs的质量活性仍高达1013 mA·mgPt1,是TKK-Pt/C的10.6倍。如图11(c)所示,经过电位循环后,Pt-Ni-Cu多面体纳米笼的比活性(38.7 m2·gPt1)几乎没有发生显著变化。结果表明,与TKK-Pt/C相比,Pt-Ni-Cu PNC展现了更好的稳定性。经过ADT后,Pt-Ni-Cu PNC的壁面孔洞增大,元素组成变化为Pt/Ni/Cu = 58.8/7.7/33.5。Ni和Cu原子的腐蚀是Pt基多金属催化剂中常见的问题,这会导致催化活性下降。为了进一步提高Pt-Ni-Cu纳米笼的长期稳定性,下一步的研究将聚焦于在纳米笼表面引入Au、Rh或Mo团簇。

4. 结论

总之,我们通过简便的溶剂热合成法以及保形腐蚀法实现了三元Pt-Ni-Cu纳米笼的可调合成。由OAM和DMF组成的混合溶液是合成具有高度组分分离的Pt-Ni-Cu核壳纳米晶体的关键,且只需更改表面活性剂即可精准调控三元Pt-Ni-Cu纳米笼的形状。与商用Pt/C催化剂相比,三元Pt-Ni-Cu纳米笼对ORR的电催化性能有了显著提高。本研究为实际应用中的多金属纳米笼的优化提供了一条有效的途径。

NOTES

*通讯作者。

参考文献

[1] Yoshida, T. and Kojima, K. (2015) Toyota MIRAI Fuel Cell Vehicle and Progress toward a Future Hydrogen Society. The Electrochemical Society Interface, 24, 45-49.
https://doi.org/10.1149/2.f03152if
[2] Banham, D. and Ye, S. (2017) Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2, 629-638.
https://doi.org/10.1021/acsenergylett.6b00644
[3] Kongkanand, A. and Mathias, M.F. (2016) The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. The Journal of Physical Chemistry Letters, 7, 1127-1137.
https://doi.org/10.1021/acs.jpclett.6b00216
[4] Zhang, L., Roling, L.T., Wang, X., Vara, M., Chi, M., Liu, J., et al. (2015) Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined, Controllable Facets. Science, 349, 412-416.
https://doi.org/10.1126/science.aab0801
[5] Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., et al. (2014) Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 343, 1339-1343.
https://doi.org/10.1126/science.1249061
[6] Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C., Yu, R., et al. (2016) Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science, 354, 1414-1419.
https://doi.org/10.1126/science.aaf9050
[7] Bu, L., Zhang, N., Guo, S., Zhang, X., Li, J., Yao, J., et al. (2016) Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science, 354, 1410-1414.
https://doi.org/10.1126/science.aah6133
[8] Debe, M.K., Steinbach, A.J., Vernstrom, G.D., Hendricks, S.M., Kurkowski, M.J., Atanasoski, R.T., et al. (2011) Extraordinary Oxygen Reduction Activity of Pt3Ni7. Journal of The Electrochemical Society, 158, B910.
https://doi.org/10.1149/1.3595748
[9] Zhu, H., Zhang, S., Guo, S., Su, D. and Sun, S. (2013) Synthetic Control of FePtM Nanorods (M = Cu, Ni) to Enhance the Oxygen Reduction Reaction. Journal of the American Chemical Society, 135, 7130-7133.
https://doi.org/10.1021/ja403041g
[10] Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., et al. (2016) Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nature Communications, 7, Article No. 11850.
https://doi.org/10.1038/ncomms11850
[11] Tian, N., Zhou, Z., Sun, S., Ding, Y. and Wang, Z.L. (2007) Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science, 316, 732-735.
https://doi.org/10.1126/science.1140484
[12] Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P. and Wang, X. (2013) Ultrathin Pt-Cu Nanosheets and Nanocones. Journal of the American Chemical Society, 135, 18304-18307.
https://doi.org/10.1021/ja4101968
[13] Yu, X., Wang, D., Peng, Q. and Li, Y. (2011) High Performance Electrocatalyst: Pt-Cu Hollow Nanocrystals. Chemical Communications, 47, 8094.
https://doi.org/10.1039/c1cc12416a
[14] Gilroy, K.D., Ruditskiy, A., Peng, H., Qin, D. and Xia, Y. (2016) Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chemical Reviews, 116, 10414-10472.
https://doi.org/10.1021/acs.chemrev.6b00211
[15] Luo, S., Tang, M., Shen, P.K. and Ye, S. (2017) Atomic‐Scale Preparation of Octopod Nanoframes with High‐Index Facets as Highly Active and Stable Catalysts. Advanced Materials, 29, Article 1601687.
https://doi.org/10.1002/adma.201601687
[16] Peng, X., Zhao, S., Omasta, T.J., Roller, J.M. and Mustain, W.E. (2017) Activity and Durability of Pt-Ni Nanocage Electocatalysts in Proton Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 203, 927-935.
https://doi.org/10.1016/j.apcatb.2016.10.081
[17] He, D.S., He, D., Wang, J., Lin, Y., Yin, P., Hong, X., et al. (2016) Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 138, 1494-1497.
https://doi.org/10.1021/jacs.5b12530
[18] Xia, B.Y., Wu, H.B., Wang, X. and Lou, X.W. (2012) One-Pot Synthesis of Cubic PtCU3 Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 134, 13934-13937.
https://doi.org/10.1021/ja3051662
[19] Yang, X., Roling, L.T., Vara, M., Elnabawy, A.O., Zhao, M., Hood, Z.D., et al. (2016) Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 16, 6644-6649.
https://doi.org/10.1021/acs.nanolett.6b03395
[20] Wang, X., Figueroa-Cosme, L., Yang, X., Luo, M., Liu, J., Xie, Z., et al. (2016) Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction. Nano Letters, 16, 1467-1471.
https://doi.org/10.1021/acs.nanolett.5b05140
[21] Chen, W., Luo, S., Sun, M., Wu, X., Zhou, Y., Liao, Y., et al. (2022) High‐Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. Advanced Materials, 34, Article 2206276.
https://doi.org/10.1002/adma.202206276
[22] Fan, X., Chen, W., Xie, L., Liu, X., Ding, Y., Zhang, L., et al. (2024) Surface‐Enriched Single‐Bi‐Atoms Tailoring of Pt Nanorings for Direct Methanol Fuel Cells with Ultralow‐Pt‐Loading. Advanced Materials, 36, Article 2313179.
https://doi.org/10.1002/adma.202313179
[23] Tang, M., Sun, M., Chen, W., Ding, Y., Fan, X., Wu, X., et al. (2024) Atomic Diffusion Engineered PtSnCu Nanoframes with High‐Index Facets Boost Ethanol Oxidation. Advanced Materials, 36, Article 2311731.
https://doi.org/10.1002/adma.202311731
[24] Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., et al. (2013) Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nature Materials, 12, 81-87.
https://doi.org/10.1038/nmat3458
[25] Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., et al. (2007) Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 315, 493-497.
https://doi.org/10.1126/science.1135941
[26] Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., et al. (2010) Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry, 2, 454-460.
https://doi.org/10.1038/nchem.623
[27] Noh, S.H., Han, B. and Ohsaka, T. (2015) First-Principles Computational Study of Highly Stable and Active Ternary Ptcuni Nanocatalyst for Oxygen Reduction Reaction. Nano Research, 8, 3394-3403.
https://doi.org/10.1007/s12274-015-0839-2
[28] Beermann, V., Gocyla, M., Willinger, E., Rudi, S., Heggen, M., Dunin-Borkowski, R.E., et al. (2016) Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Nano Letters, 16, 1719-1725.
https://doi.org/10.1021/acs.nanolett.5b04636
[29] Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., et al. (2015) One-Pot Synthesis of Ternary Pt-Ni-Cu Nanocrystals with High Catalytic Performance. Chemistry of Materials, 27, 6402-6410.
https://doi.org/10.1021/acs.chemmater.5b02575
[30] Saleem, F., Ni, B., Yong, Y., Gu, L. and Wang, X. (2016) Ultra-Small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. Small, 12, 5261-5268.
https://doi.org/10.1002/smll.201601299
[31] Gan, L., Cui, C., Heggen, M., Dionigi, F., Rudi, S. and Strasser, P. (2014) Element-Specific Anisotropic Growth of Shaped Platinum Alloy Nanocrystals. Science, 346, 1502-1506.
https://doi.org/10.1126/science.1261212
[32] Cui, C., Gan, L., Heggen, M., Rudi, S. and Strasser, P. (2013) Compositional Segregation in Shaped Pt Alloy Nanoparticles and Their Structural Behaviour during Electrocatalysis. Nature Materials, 12, 765-771.
https://doi.org/10.1038/nmat3668
[33] Carpenter, M.K., Moylan, T.E., Kukreja, R.S., Atwan, M.H. and Tessema, M.M. (2012) Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 134, 8535-8542.
https://doi.org/10.1021/ja300756y
[34] Muzart, J. (2009) N,N-Dimethylformamide: Much More than a Solvent. Tetrahedron, 65, 8313-8323.
https://doi.org/10.1016/j.tet.2009.06.091
[35] Bai, S., Wang, C., Jiang, W., Du, N., Li, J., Du, J., et al. (2015) Etching Approach to Hybrid Structures of PtPd Nanocages and Graphene for Efficient Oxygen Reduction Reaction Catalysts. Nano Research, 8, 2789-2799.
https://doi.org/10.1007/s12274-015-0770-6
[36] Kang, Y., Snyder, J., Chi, M., Li, D., More, K.L., Markovic, N.M., et al. (2014) Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Letters, 14, 6361-6367.
https://doi.org/10.1021/nl5028205
[37] Wang, K., Sriphathoorat, R., Luo, S., Tang, M., Du, H. and Shen, P.K. (2016) Ultrathin PtCu Hexapod Nanocrystals with Enhanced Catalytic Performance for Electro-Oxidation Reactions. Journal of Materials Chemistry A, 4, 13425-13430.
https://doi.org/10.1039/c6ta05230d
[38] Mourdikoudis, S. and Liz-Marzán, L.M. (2013) Oleylamine in Nanoparticle Synthesis. Chemistry of Materials, 25, 1465-1476.
https://doi.org/10.1021/cm4000476
[39] Kong, F., Liu, S., Li, J., Du, L., Banis, M.N., Zhang, L., et al. (2019) Trimetallic Pt-Pd-Ni Octahedral Nanocages with Subnanometer Thick-Wall towards High Oxygen Reduction Reaction. Nano Energy, 64, Article 103890.
https://doi.org/10.1016/j.nanoen.2019.103890
[40] Tian, X., Zhao, X., Su, Y., Wang, L., Wang, H., Dang, D., et al. (2019) Engineering Bunched Pt-Ni Alloy Nanocages for Efficient Oxygen Reduction in Practical Fuel Cells. Science, 366, 850-856.
https://doi.org/10.1126/science.aaw7493
[41] Zhu, J., Chen, Z., Xie, M., Lyu, Z., Chi, M., Mavrikakis, M., et al. (2019) Iridium‐Based Cubic Nanocages with 1.1‐nm‐Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angewandte Chemie International Edition, 58, 7244-7248.
https://doi.org/10.1002/anie.201901732
[42] Zhu, J., Xie, M., Chen, Z., Lyu, Z., Chi, M., Jin, W., et al. (2020) Pt‐Ir‐Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Advanced Energy Materials, 10, Article 1904114.
https://doi.org/10.1002/aenm.201904114
[43] Zhu, J., Xu, L., Lyu, Z., Xie, M., Chen, R., Jin, W., et al. (2021) Janus Nanocages of Platinum‐Group Metals and Their Use as Effective Dual‐Electrocatalysts. Angewandte Chemie International Edition, 60, 10384-10392.
https://doi.org/10.1002/anie.202102275
[44] Zheng, Y., Petersen, A.S., Wan, H., Hübner, R., Zhang, J., Wang, J., et al. (2023) Scalable and Controllable Synthesis of Pt‐Ni Bunched‐Nanocages Aerogels as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 13, Article 2204257.
https://doi.org/10.1002/aenm.202204257
[45] Ding, H., Su, C., Wu, J., Lv, H., Tan, Y., Tai, X., et al. (2024) Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. Journal of the American Chemical Society, 146, 7858-7867.
https://doi.org/10.1021/jacs.4c01379
[46] Mahmoud, M.A., Saira, F. and El-Sayed, M.A. (2010) Experimental Evidence for the Nanocage Effect in Catalysis with Hollow Nanoparticles. Nano Letters, 10, 3764-3769.
https://doi.org/10.1021/nl102497u

Baidu
map