[1] |
Brenner, D.J. and Hall, E.J. (2007) Computed Tomography—An Increasing Source of Radiation Exposure. New England Journal of Medicine, 357, 2277-2284. https://doi.org/10.1056/nejmra072149 |
[2] |
Hsieh, J. (1998) Adaptive Streak Artifact Reduction in Computed Tomography Resulting from Excessive X-Ray Photon Noise. Medical Physics, 25, 2139-2147. https://doi.org/10.1118/1.598410 |
[3] |
Ben Yedder, H., Cardoen, B. and Hamarneh, G. (2020) Deep Learning for Biomedical Image Reconstruction: A Survey. Artificial Intelligence Review, 54, 215-251. https://doi.org/10.1007/s10462-020-09861-2 |
[4] |
Sigal-Cinqualbre, A.B., Hennequin, R., Abada, H.T., Chen, X. and Paul, J. (2004) Low-Kilovoltage Multi-Detector Row Chest CT in Adults: Feasibility and Effect on Image Quality and Iodine Dose. Radiology, 231, 169-174. https://doi.org/10.1148/radiol.2311030191 |
[5] |
江一峰, 叶剑定, 丁晓毅, 等. 胸部低剂量CT图像噪声和伪影分析[J]. 中华放射学杂志, 2010, 44(1): 37-40. |
[6] |
Pan, X., Sidky, E.Y. and Vannier, M. (2009) Why Do Commercial CT Scanners Still Employ Traditional, Filtered Back-Projection for Image Reconstruction? Inverse Problems, 25, Article 123009. https://doi.org/10.1088/0266-5611/25/12/123009 |
[7] |
Balda, M., Hornegger, J. and Heismann, B. (2012) Ray Contribution Masks for Structure Adaptive Sinogram Filtering. IEEE Transactions on Medical Imaging, 31, 1228-1239. https://doi.org/10.1109/tmi.2012.2187213 |
[8] |
Manduca, A., Yu, L., Trzasko, J.D., Khaylova, N., Kofler, J.M., McCollough, C.M., et al. (2009) Projection Space Denoising with Bilateral Filtering and CT Noise Modeling for Dose Reduction in CT. Medical Physics, 36, 4911-4919. https://doi.org/10.1118/1.3232004 |
[9] |
Wang, J., Li, T., Lu, H., et al. (2006) Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography. IEEE Transactions on Medical Imaging, 25, 1272-1283. |
[10] |
Wang, J., Lu, H., Wen, J., et al. (2008) Multiscale Penalized Weighted Least-Squares Sinogram Restoration for Low-Dose X-Ray Computed Tomography. IEEE Transactions on Biomedical Engineering, 55, 1022-1031. |
[11] |
Rudin, L.I., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 60, 259-268. https://doi.org/10.1016/0167-2789(92)90242-f |
[12] |
Tang, X., Hsieh, J., Hagiwara, A., Nilsen, R.A., Thibault, J. and Drapkin, E. (2005) A Three-Dimensional Weighted Cone Beam Filtered Backprojection (CB-FBP) Algorithm for Image Reconstruction in Volumetric CT under a Circular Source Trajectory. Physics in Medicine and Biology, 50, 3889-3905. https://doi.org/10.1088/0031-9155/50/16/016 |
[13] |
Defrise, M., Noo, F. and Kudo, H. (2000) Quasi-Exact Filtered Backprojection Algorithm for Long-Object Problem in Helical Cone-Beam Tomography. IEEE Transactions on Medical Imaging, 19, 902-921. https://doi.org/10.1109/42.887838 |
[14] |
Feldkamp, L.A., Davis, L.C. and Kress, J.W. (1984) Practical Cone-Beam Algorithm. Journal of the Optical Society of America A, 1, 612-619. https://doi.org/10.1364/josaa.1.000612 |
[15] |
Rodet, T., Noo, F. and Defrise, M. (2004) The Cone-Beam Algorithm of Feldkamp, Davis, and Kress Preserves Oblique Line Integrals. Medical Physics, 31, 1972-1975. https://doi.org/10.1118/1.1759828 |
[16] |
Miao, H., Zhao, H., Gao, F. and Gong, S. (2009) Implementation of FDK Reconstruction Algorithm in Cone-Beam CT Based on the 3D Shepp-Logan Model. 2009 2nd International Conference on Biomedical Engineering and Informatics, Tianjin, 17-19 October 2009, 1-5. https://doi.org/10.1109/bmei.2009.5304987 |
[17] |
韩泽芳, 上官宏, 张雄, 等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 117-134. |
[18] |
Bender, R., Bellman, S.H. and Gordon, R. (1970) ART and the Ribosome: A Preliminary Report on the Three-Dimensional Structure of Individual Ribosomes Determined by an Algebraic Reconstruction Technique. Journal of Theoretical Biology, 29, 483-487. https://doi.org/10.1016/0022-5193(70)90110-4 |
[19] |
Donato, S., Brombal, L., Arfelli, F., Fanti, V., Longo, R., Oliva, P., et al. (2019) Optimization of a Customized Simultaneous Algebraic Reconstruction Technique Algorithm for Breast CT. 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, 26 October-2 November 2019, 1-2. https://doi.org/10.1109/nss/mic42101.2019.9060011 |
[20] |
Sidky, E.Y. and Pan, X. (2008) Image Reconstruction in Circular Cone-Beam Computed Tomography by Constrained, Total-Variation Minimization. Physics in Medicine and Biology, 53, 4777-4807. https://doi.org/10.1088/0031-9155/53/17/021 |
[21] |
Zhang, Y., Zhang, W., Lei, Y. and Zhou, J. (2014) Few-View Image Reconstruction with Fractional-Order Total Variation. Journal of the Optical Society of America A, 31, 981-995. https://doi.org/10.1364/josaa.31.000981 |
[22] |
Zhang, Y., Wang, Y., Zhang, W., Lin, F., Pu, Y. and Zhou, J. (2016) Statistical Iterative Reconstruction Using Adaptive Fractional Order Regularization. Biomedical Optics Express, 7, 1015-1029. https://doi.org/10.1364/boe.7.001015 |
[23] |
Zhang, Y., Zhang, W., Chen, H., Yang, M., Li, T. and Zhou, J. (2013) Few-View Image Reconstruction Combining Total Variation and a High-Order Norm. International Journal of Imaging Systems and Technology, 23, 249-255. https://doi.org/10.1002/ima.22058 |
[24] |
Lu, Y., Zhao, J. and Wang, G. (2011) Few-View Image Reconstruction with Dual Dictionaries. Physics in Medicine and Biology, 57, 173-189. https://doi.org/10.1088/0031-9155/57/1/173 |
[25] |
Liu, Q., Zhang, M. and Zhao, J. (2014) Adaptive Dictionary Learning in Sparse Gradient Domain for CT Reconstruction. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, 29 April-2 May 2014, 169-172. https://doi.org/10.1109/isbi.2014.6867836 |
[26] |
Ma, J., Huang, J., Feng, Q., Zhang, H., Lu, H., Liang, Z., et al. (2011) Low-Dose Computed Tomography Image Restoration Using Previous Normal-Dose Scan. Medical Physics, 38, 5713-5731. https://doi.org/10.1118/1.3638125 |
[27] |
Chen, Y., Yang, Z., Hu, Y., Yang, G., Zhu, Y., Li, Y., et al. (2012) Thoracic Low-Dose CT Image Processing Using an Artifact Suppressed Large-Scale Nonlocal Means. Physics in Medicine and Biology, 57, 2667-2688. https://doi.org/10.1088/0031-9155/57/9/2667 |
[28] |
Zhong, J., Ning, R. and Conover, D. (2004) Image Denoising Based on Multiscale Singularity Detection for Cone Beam CT Breast Imaging. IEEE Transactions on Medical Imaging, 23, 696-703. https://doi.org/10.1109/tmi.2004.826944 |
[29] |
Fumene Feruglio, P., Vinegoni, C., Gros, J., Sbarbati, A. and Weissleder, R. (2010) Block Matching 3D Random Noise Filtering for Absorption Optical Projection Tomography. Physics in Medicine and Biology, 55, 5401-5415. https://doi.org/10.1088/0031-9155/55/18/009 |
[30] |
Chen, L.L., Gou, S.P., Yao, Y., Bai, J., Jiao, L. and Sheng, K. (2016) Denoising of Low Dose CT Image with Context-Based BM3D. 2016 IEEE Region 10 Conference (TENCON), Singapore, 22-25 November 2016, 682-685. https://doi.org/10.1109/tencon.2016.7848089 |
[31] |
Chen, Y., Yin, X., Shi, L., Shu, H., Luo, L., Coatrieux, J., et al. (2013) Improving Abdomen Tumor Low-Dose CT Images Using a Fast Dictionary Learning Based Processing. Physics in Medicine and Biology, 58, 5803-5820. https://doi.org/10.1088/0031-9155/58/16/5803 |
[32] |
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science, Springer, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28 |
[33] |
Mazandarani, F.N., Babyn, P. and Alirezaie, J. (2023) UNeXt: A Low-Dose CT Denoising UNet Model with the Modified Convnext Block. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, 4-10 June 2023, 1-5. https://doi.org/10.1109/icassp49357.2023.10095645 |
[34] |
Nasrin, S., Alom, M.Z., Burada, R., Taha, T.M. and Asari, V.K. (2019) Medical Image Denoising with Recurrent Residual U-Net (R2U-Net) Base Auto-Encoder. 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, 15-19 July 2019, 345-350. https://doi.org/10.1109/naecon46414.2019.9057834 |
[35] |
Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., et al. (2017) Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network. IEEE Transactions on Medical Imaging, 36, 2524-2535. https://doi.org/10.1109/tmi.2017.2715284 |
[36] |
Liang, T., Jin, Y., Li, Y. and Wang, T. (2020) EDCNN: Edge Enhancement-Based Densely Connected Network with Compound Loss for Low-Dose CT Denoising. 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, 6-9 December 2020, 193-198. https://doi.org/10.1109/icsp48669.2020.9320928 |
[37] |
Won, D.K., An, S., Park, S.H. and Ye, D.H. (2020) Low-Dose CT Denoising Using Octave Convolution with High and Low Frequency Bands. In: Lecture Notes in Computer Science, Springer, 68-78. https://doi.org/10.1007/978-3-030-59354-4_7 |
[38] |
Gu, L., Deng, W. and Wang, G. (2024) UNAD: Universal Anatomy-Initialized Noise Distribution Learning Framework towards Low-Dose CT Denoising. ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, 14-19 April 2024, 1671-1675. https://doi.org/10.1109/icassp48485.2024.10446919 |
[39] |
Su, W., Qu, Y., Deng, C., Wang, Y., Zheng, F. and Chen, Z. (2020) Enhance Generative Adversarial Networks by Wavelet Transform to Denoise Low-Dose CT Images. 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 25-28 October 2020, 350-354. https://doi.org/10.1109/icip40778.2020.9190766 |
[40] |
Tong, G., Hu, F. and Liu, H. (2024) DAGAN: A GAN Network for Image Denoising of Medical Images Using Deep Learning of Residual Attention Structures. International Journal of Pattern Recognition and Artificial Intelligence, 38, Article 2452003. https://doi.org/10.1142/s0218001424520037 |
[41] |
Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., et al. (2018) Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss. IEEE Transactions on Medical Imaging, 37, 1348-1357. https://doi.org/10.1109/tmi.2018.2827462 |
[42] |
Zhu, J., Park, T., Isola, P. and Efros, A.A. (2017) Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 2242-2251. https://doi.org/10.1109/iccv.2017.244 |
[43] |
Sowjanya, M., Laxmi, M., Sreelatha, B., et al. (2023) Unsupervised Medical Image Denoising Using Cyclegan: Improving Low-Dose CT Image Quality. 2023 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, 17-18 November 2023, 1-6. https://doi.org/10.1109/icscan58655.2023.10395736 |
[44] |
Wang, D., Wu, Z. and Yu, H. (2021) Ted-Net: Convolution-Free T2T Vision Transformer-Based Encoder-Decoder Dilation Network for Low-Dose CT Denoising. In: Lecture Notes in Computer Science, Springer, 416-425. https://doi.org/10.1007/978-3-030-87589-3_43 |
[45] |
Wang, D., Fan, F., Wu, Z., Liu, R., Wang, F. and Yu, H. (2023) CTformer: Convolution-Free Token2Token Dilated Vision Transformer for Low-Dose CT Denoising. Physics in Medicine & Biology, 68, Article 065012. https://doi.org/10.1088/1361-6560/acc000 |
[46] |
Zhang, B., Zhang, Y., Wang, B., He, X., Zhang, F. and Zhang, X. (2024) Denoising Swin Transformer and Perceptual Peak Signal-to-Noise Ratio for Low-Dose CT Image Denoising. Measurement, 227, Article 114303. https://doi.org/10.1016/j.measurement.2024.114303 |