异补骨脂二氢黄酮的生物活性研究进展
Research Progress on the Biological Activity of Isobavachin
DOI: 10.12677/jocr.2025.131007, PDF, HTML, XML,   
作者: 张文渊:兰州交通大学生物与制药工程学院,甘肃 兰州
关键词: 天然产物异补骨脂二氢黄酮生物活性Natural Product Isobavachin Biological Activity
摘要: 异补骨脂二氢黄酮(Isobavachin)是一种异戊二烯基化的二氢黄酮类化合物,主要存在于豆科植物补骨脂( Psoralea corylifolia Linn.)中,具有广泛的药理作用和生理活性,如治疗组织疏松、抗炎、抗高尿酸血症等。近年来,随着生物技术的进步,人们对天然产物异补骨脂二氢黄酮的生物活性进行了更为深入的研究。本文将梳理天然产物异补骨脂二氢黄酮生物活性的最新研究进展。
Abstract: Isobavachin is an isoprenylated dihydroflavonoid compound, which is mainly found in the leguminous plant Psoralea corylifolia Linn. It has a wide range of pharmacological and physiological activities, such as the treatment of tissue looseness, anti-inflammation, and anti-hyperuricemia. In recent years, with the advancement of biotechnology, people have conducted more in-depth research on the biological activity of the natural product Isobavachin. This article will review the latest research progress on the biological activity of the natural product Isobavachin.
文章引用:张文渊. 异补骨脂二氢黄酮的生物活性研究进展[J]. 有机化学研究, 2025, 13(1): 70-76. https://doi.org/10.12677/jocr.2025.131007

1. 引言

补骨脂(豆科) (Psoralea corylifolia Linn.)是一种一年生草本植物,广泛分布于东南亚。并且是一种著名的传统中药,在东亚国家被广泛用于治疗支气管哮喘、白细胞减少症、白癜风和牛皮癣等各种疾病[1]-[4]

研究表明,补骨脂主要代谢物是香豆素、黄酮类化合物和单萜酚类的杂萜类化合物。异补骨脂二氢黄酮(IBA)在植物界中广泛分布,尤其在补骨脂的种子与果实中含量丰富[5] [6]。IBA是一种异戊二烯基化的黄酮类化合物,其结构式简单(见图1),为C20H20O4。目前研究表明,IBA具有多种活性作用,能显著刺激成骨细胞增殖和分化[7]。IBA对代谢活性较低的C6胶质瘤细胞和代谢活性较高的H4IIE肝癌细胞有细胞毒作用[8],此外,IBA还具有抗菌、抗氧化作用[9],正是由于这些显著的活性作用,IBA受到了越来越多的关注[10] [11] (见表1)。

Figure 1. Isobavachin

1. 异补骨脂二氢黄酮

Table 1. Biological activities of Isobavachin

1. 异补骨脂二氢黄酮生物活性

生物活性

作用机制

引用

异补骨脂二氢黄酮(IBA)

抗骨质疏松

抑制丝裂原活化蛋白激酶(MAPK)通路上调铁转运蛋白1 (Fpn1)表达并促进Fpn1介导的细胞内铁外流

[7]

抗炎

通过下调MAPK和NF-κB通路具有抗炎活性

[27]

抗高尿酸血症

抑制人尿酸转运蛋白1 (hURAT1)葡萄糖转运蛋白9 (GLUT9)

[33]

2. 补骨脂二氢黄酮类天然产物的生物活性研究

2.1. 抗骨质疏松症

骨质疏松症的特征表现为骨密度降低及骨组织微结构的退化,进而引发骨脆性增高,易发生骨折[12]-[14]。近期的临床研究揭示,骨质疏松症的病理机制主要为骨代谢紊乱,其中骨形成与骨吸收之间的失衡发挥着关键作用[15]。成骨细胞在新骨形成过程中起主导作用,而破骨细胞则主要负责骨吸收。因此,在正常的骨重塑过程中,促进成骨细胞的增殖或诱导其分化,均能有效促进骨形成[16]

研究显示,通过MTT法评估了IBA对大鼠颅骨成骨细胞增殖活性的影响,淫羊藿苷(Icariin)作为阳性对照。结果表明,与淫羊藿苷相比,IBA在相同浓度下展现出显著的细胞增殖活性,并且在48小时治疗后呈现剂量依赖性[7]

骨骼作为一种动态代谢组织,在骨形成与骨吸收的持续重塑与维持中保持平衡[17]。骨骼重塑失衡导致的骨质流失是牙周炎和骨质疏松症等溶骨性疾病的主要特征[18] [19]。牙周炎以牙槽骨过度吸收为特征,是全球第六大常见疾病,对全球健康和经济造成了重大负担[20] [21]。过度的骨吸收与破骨细胞数量及活性的增加密切相关[22]。因此,破骨细胞被视为治疗骨质流失性疾病的关键靶点。

Figure 2. Mechanism of action of Isobavachin

2. 异补骨脂二氢黄酮的作用机理

研究发现,IBA能够抑制BMM和RAW264.7细胞中RANKL诱导的破骨细胞生成,并且能够抑制破骨细胞介导的体外骨吸收。转录组分析揭示,IBA处理后,差异表达基因在铁稳态和活性氧(ROS)代谢过程中富集。IBA通过抑制破骨细胞中的铁积累发挥其抗破骨细胞生成作用。机制上,IBA通过抑制丝裂原活化蛋白激酶(MAPK)通路,上调铁转运蛋白1 (Fpn1)的表达并促进Fpn1介导的细胞内铁外流,从而减弱了RANKL诱导的破骨细胞中的铁积累(见图2)。

总体而言,这些研究结果表明IBA可作为一种有前景的治疗策略,用于以破骨细胞骨吸收为特征的骨病[23]

2.2. 抗炎活性

炎症是人体对刺激物、损伤和感染的防御机制,可激活免疫系统[24]。巨噬细胞在炎症期间通过释放细胞因子和生长因子发挥关键作用,并参与抗原呈递、吞噬作用和免疫调节[25]。当脂多糖(LPS)与巨噬细胞Toll样受体(TLR)结合时,它会触发细胞内信号通路,如NF-κB和MAPK,从而产生炎症介质和促炎细胞因子[26]。虽然这些物质可以激活免疫力、对抗病原体,但过量分泌会损害组织、导致基因突变和神经损伤,因此需要调节NF-κB和MAPK [5]

例如Chung Y C等人在2023年研究了使用斑马鱼炎症模型评估了IBC (异补骨脂二氢黄酮)在巨噬细胞中的抗炎作用。RAW264.7细胞处于IBC (3.75-30 μM)和LPS (脂多糖) (100 ng/mL) 21小时后,对细胞活力没有显著影响。后续实验集中于3.75、7.5、15和30 μM的IBC浓度(见图3(A))。仅用LPS处理时,NO和PGE2水平增加,用IBC处理(3.75-30 μM)时,NO和PGE2水平以剂量依赖性方式显著降低(见图3(B))。qRT-PCR和Western blot结果显示,负责NO和PGE2产生的INOS和COX-2被IBC下调(见图3(C))。IBC (7.5-30 μM)有效减少了促炎细胞因子的释放。值得注意的是,30 μM的IBC处理分别抑制了LPS诱导的TNF-α、IL-6和IL-1β分泌36.7%、74.6%和38.1% (见图3(D))。该研究表明,IBC通过下调MAPK和NF-κB通路具有抗炎活性[27]

综上所述,异补骨脂二氢黄酮(IBC)在斑马鱼炎症模型中能有效降低炎症介质NO和PGE2水平,并减少促炎细胞因子的释放,表明IBC具有抗炎作用。由于其简单的结构,可以进一步衍生化,作为药物的良好前体。

Figure 3. Regulatory effects of isopsoralen flavonoids (IBC) on LPS-induced inflammatory responses in vivo and in vitro. (A) Chemical structure of isopsoralen flavonoids and its activity against LPS-treated RAW264.7 cells. (B) Production of nitric oxide (NO) and prostaglandin E2 (PGE2). (C) Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (cox-2) mRNA and protein in RAW264.7 cells. (D) Expression levels of proinflammatory cytokines

3. 异补骨脂二氢黄酮(IBC)对LPS诱导的体内外炎症反应的调节作用。(A) 异补骨脂二氢黄酮对LPS处理过的RAW264.7细胞活性。(B) 一氧化氮(NO)和前列腺素E2 (PGE 2)的产生。(C) RAW264.7细胞中诱导型一氧化氮合酶(iNOS)和环氧合酶-2 (cox-2) mRNA和蛋白的表达。(D) 促炎性细胞因子的表达水平

2.3. 抗高尿酸血症

近年来,高尿酸血症(HUA)已成为亟待解决的公共卫生问题[28]。尿酸(UA或尿酸盐)是嘌呤核苷酸代谢的最终产物,UA异常升高导致高尿酸血症的发生[29]

超过90%的滤过尿酸被重吸收入血液,而这种重吸收过程受到肾脏近端小管上皮细胞多种转运蛋白的影响,主要有肾小管上皮细胞端腔膜上的人尿酸转运蛋白1 (hURAT1)、有机阴离子转运蛋白4/10 (OAT4和OAT10)、基底外侧膜上的葡萄糖转运蛋白9 (GLUT9)和基底外侧刷状缘膜上的ATP结合盒G亚家族成员2 (ABCG2)等。其中,hURAT1作为尿酸重吸收的第一步,由于hURAT1的底物特异性和药用特性,是治疗HUA和痛风最重要的靶点之一[30]

2021年Zhao Z通过结构建模和构象研究,从天然产物数据库中筛选出了针对hURAT1靶标的IBA [31]。之后采用14C标记尿酸摄取试验测定了IBA的hURAT1体外抑制活性。以商用hURAT1抑制剂(Lesinurad)为阳性对照药物。结果表明对hURAT1的IC50值,Lesinurad为7.18 μM,而IBA为0.24 μM。IBA的活性远高于lesinurad。此外,GLUT9以电压依赖的方式转运尿酸[32],采用电生理技术检测IBA对GLUT9的抑制作用。在HEK293-GLUT9细胞中,1mM尿酸诱发相对电流,IBA在10 μM时显著抑制尿酸诱导电流,抑制率为84.5%。IBA表现出较强的GLUT9抑制作用,IC50值为1.12 ± 0.26 μM。综上IBA具有强效的hURAT1和GLUT9双靶点抑制作用,强于现有的所有降尿酸药物[33]。随后在2024年,该课题组进一步研究了IBA的细胞毒性,从用IBA治疗的小鼠身上取下肾脏进行病理检查。对肾脏进行HE染色。与对照组相比,模型组肾组织表现出明显的肾小管扩张、肾小球缺血和萎缩。IBA缓解了这些症状,表明IBA可以缓解高尿酸血症引起的肾损伤。

3. 结论

本文全面综述了异补骨脂二氢黄酮(Isobavachin)生物活性的研究进展。通过对近年来相关研究的分析,得出以下结论:

异补骨脂二氢黄酮具有广泛的生物活性,在抗高尿血酸症方面有显著抑制效果,对于其他方面也有较为不错的活性。因其化学结构简单,可作为各种治疗药物的前体化合物对其进行进一步衍生化。

参考文献

[1] Haraguchi, H., Inoue, J., Tamura, Y. and Mizutani, K. (2002) Antioxidative Components of Psoralea corylifolia (Leguminosae). Phytotherapy Research, 16, 539-544.
https://doi.org/10.1002/ptr.972
[2] Guo, J.N., et al. (2005) Antioxidants from a Chinese Medicinal Herb—Psoralea corylifolia L. Food Chemistry, 91, 287-292.
https://doi.org/10.1016/j.foodchem.2004.04.029
[3] Wang, D., Li, F. and Jiang, Z. (2001) Osteoblastic Proliferation Stimulating Activity of Psoralea corylifolia Extracts and Two of Its Flavonoids. Planta Medica, 67, 748-749.
https://doi.org/10.1055/s-2001-18343
[4] Cho, H., Jun, J., Song, E., Kang, K., Baek, H., Ko, Y., et al. (2001) Bakuchiol: A Hepatoprotective Compound of Psoralea corylifolia on Tacrine-Induced Cytotoxicity in Hep G2 Cells. Planta Medica, 67, 750-751.
https://doi.org/10.1055/s-2001-18347
[5] Chung, Y.C., Song, S.J., Lee, A., Jang, C.H., Kim, C. and Hwang, Y. (2024) Isobavachin, a Main Bioavailable Compound in Psoralea corylifolia, Alleviates Lipopolysaccharide-Induced Inflammatory Responses in Macrophages and Zebrafish by Suppressing the MAPK and NF-κB Signaling Pathways. Journal of Ethnopharmacology, 321, Article ID: 117501.
https://doi.org/10.1016/j.jep.2023.117501
[6] Torres, S.L., Arruda, M.S.P., Arruda, A.C., Müller, A.H. and Silva, S.C. (2000) Flavonoids from Brosimum acutifolium. Phytochemistry, 53, 1047-1050.
https://doi.org/10.1016/s0031-9422(99)00608-1
[7] Li, W.D., Yan, C.P., Wu, Y., Weng, Z.B., Yin, F.Z., Yang, G.M., et al. (2014) Osteoblasts Proliferation and Differentiation Stimulating Activities of the Main Components of Fructus Psoraleae corylifoliae. Phytomedicine, 21, 400-405.
https://doi.org/10.1016/j.phymed.2013.09.015
[8] Wätjen, W., Weber, N., Lou, Y., Wang, Z., Chovolou, Y., Kampkötter, A., et al. (2007) Prenylation Enhances Cytotoxicity of Apigenin and Liquiritigenin in Rat H4IIE Hepatoma and C6 Glioma Cells. Food and Chemical Toxicology, 45, 119-124.
https://doi.org/10.1016/j.fct.2006.08.008
[9] Wu, C., Gao, M., Chen, J., Sun, X., Zhang, K., Dai, Y., et al. (2022) Isobavachalcone Induces Multiple Cell Death in Human Triple-Negative Breast Cancer MDA-MB-231 Cells. Molecules, 27, Article No. 6787.
https://doi.org/10.3390/molecules27206787
[10] Matsuda, H., Kiyohara, S., Sugimoto, S., Ando, S., Nakamura, S. and Yoshikawa, M. (2009) Bioactive Constituents from Chinese Natural Medicines. XXXIII. Inhibitors from the Seeds of Psoralea corylifolia on Production of Nitric Oxide in Lipopolysaccharide-Activated Macrophages. Biological and Pharmaceutical Bulletin, 32, 147-149.
https://doi.org/10.1248/bpb.32.147
[11] Nepal, M., Jung Choi, H., Choi, B., Lim Kim, S., Ryu, J., Hee Kim, D., et al. (2012) Anti-Angiogenic and Anti-Tumor Activity of Bavachinin by Targeting Hypoxia-Inducible Factor-1α. European Journal of Pharmacology, 691, 28-37.
https://doi.org/10.1016/j.ejphar.2012.06.028
[12] Kim, T., Jung, J.W., Ha, B.G., Hong, J.M., Park, E.K., Kim, H., et al. (2011) The Effects of Luteolin on Osteoclast Differentiation, Function in Vitro and Ovariectomy-Induced Bone Loss. The Journal of Nutritional Biochemistry, 22, 8-15.
https://doi.org/10.1016/j.jnutbio.2009.11.002
[13] Park, S.B., Lee, Y.J. and Chung, C.K. (2010) Bone Mineral Density Changes after Ovariectomy in Rats as an Osteopenic Model: Stepwise Description of Double Dorso-Lateral Approach. Journal of Korean Neurosurgical Society, 48, Article No. 309.
https://doi.org/10.3340/jkns.2010.48.4.309
[14] Shiraishi, A., Miyabe, S., Nakano, T., Umakoshi, Y., Ito, M. and Mihara, M. (2009) The Combination Therapy with Alfacalcidol and Risedronate Improves the Mechanical Property in Lumbar Spine by Affecting the Material Properties in an Ovariectomized Rat Model of Osteoporosis. BMC Musculoskeletal Disorders, 10, Article No. 66.
https://doi.org/10.1186/1471-2474-10-66
[15] Riggs, B.L., Khosla, S. and Melton, L.J. (2002) Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocrine Reviews, 23, 279-302.
https://doi.org/10.1210/edrv.23.3.0465
[16] Ducy, P., Schinke, T. and Karsenty, G. (2000) The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science, 289, 1501-1504.
https://doi.org/10.1126/science.289.5484.1501
[17] Sozen, T., Ozisik, L. and Calik Basaran, N. (2017) An Overview and Management of Osteoporosis. European Journal of Rheumatology, 4, 46-56.
https://doi.org/10.5152/eurjrheum.2016.048
[18] Lin, J.T. and Lane, J.M. (2004) Osteoporosis. Clinical Orthopaedics and Related Research, 425, 126-134.
https://doi.org/10.1097/01.blo.0000132404.30139.f2
[19] Wang, X., Chen, B., Sun, J., Jiang, Y., Zhang, H., Zhang, P., et al. (2018) Iron-Induced Oxidative Stress Stimulates Osteoclast Differentiation via NF-κB Signaling Pathway in Mouse Model. Metabolism, 83, 167-176.
https://doi.org/10.1016/j.metabol.2018.01.005
[20] Rensvold, J.W., Krautkramer, K.A., Dowell, J.A., Denu, J.M. and Pagliarini, D.J. (2016) Iron Deprivation Induces Transcriptional Regulation of Mitochondrial Biogenesis. Journal of Biological Chemistry, 291, 20827-20837.
https://doi.org/10.1074/jbc.m116.727701
[21] Gattermann, N. (2016) Iron Rusting in the Mitochondria? Blood, 128, 1907-1908.
https://doi.org/10.1182/blood-2016-08-732966
[22] Li, T., Du, Y., Yao, H., Zhao, B., Wang, Z., Chen, R., et al. (2024) Isobavachin Attenuates Osteoclastogenesis and Periodontitis-Induced Bone Loss by Inhibiting Cellular Iron Accumulation and Mitochondrial Biogenesis. Biochemical Pharmacology, 224, Article ID: 116202.
https://doi.org/10.1016/j.bcp.2024.116202
[23] Guzik, T., Korbut, R. and Adamek-Guzik, T. (2003) Nitric Oxide and Superoxide in Inflammation. Journal of Physiology and Pharmacology, 54, 469-487.
[24] Hirayama, D., Iida, T. and Nakase, H. (2017) The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. International Journal of Molecular Sciences, 19, Article No. 92.
https://doi.org/10.3390/ijms19010092
[25] Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-κB Signaling in Inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 17023.
https://doi.org/10.1038/sigtrans.2017.23
[26] Kany, S., Vollrath, J.T. and Relja, B. (2019) Cytokines in Inflammatory Disease. International Journal of Molecular Sciences, 20, Article No. 6008.
https://doi.org/10.3390/ijms20236008
[27] Dehlin, M., Jacobsson, L. and Roddy, E. (2020) Global Epidemiology of Gout: Prevalence, Incidence, Treatment Patterns and Risk Factors. Nature Reviews Rheumatology, 16, 380-390.
https://doi.org/10.1038/s41584-020-0441-1
[28] Pasalic, D., Marinkovic, N. and Feher-Turkovic, L. (2012) Uric Acid as One of the Important Factors in Multifactorial Disorders-Facts and Controversies. Biochemia Medica, 22, 63-75.
[29] Keenan, R.T. (2020) The Biology of Urate. Seminars in Arthritis and Rheumatism, 50, S2-S10.
https://doi.org/10.1016/j.semarthrit.2020.04.007
[30] Chen, X., Zhao, Z., Luo, J., Wu, T., Shen, Y., Chang, S., et al. (2021) Novel Natural Scaffold as hURAT1 Inhibitor Identified by 3d-Shape-Based, Docking-Based Virtual Screening Approach and Biological Evaluation. Bioorganic Chemistry, 117, Article ID: 105444.
https://doi.org/10.1016/j.bioorg.2021.105444
[31] Bibert, S., Hess, S.K., Firsov, D., Thorens, B., Geering, K., Horisberger, J., et al. (2009) Mouse GLUT9: Evidences for a Urate Uniporter. American Journal of Physiology-Renal Physiology, 297, F612-F619.
https://doi.org/10.1152/ajprenal.00139.2009
[32] Zhao, Z., Luo, J., Liao, H., Zheng, F., Chen, X., Luo, J., et al. (2023) Pharmacological Evaluation of a Novel Skeleton Compound Isobavachin (4’,7-Dihydroxy-8-Prenylflavanone) as a Hypouricemic Agent: Dual Actions of URAT1/GLUT9 and Xanthine Oxidase Inhibitory Activity. Bioorganic Chemistry, 133, Article ID: 106405.
https://doi.org/10.1016/j.bioorg.2023.106405
[33] Zhao, Z., Chen, X., Luo, J., Chen, M., Luo, J., Chen, J., et al. (2024) Design, Synthesis and Bioactivity Evaluation of Isobavachin Derivatives as hURAT1 Inhibitors for Hyperuricemia Agents. European Journal of Medicinal Chemistry, 277, Article ID: 116753.
https://doi.org/10.1016/j.ejmech.2024.116753

Baidu
map