[1] |
Haraguchi, H., Inoue, J., Tamura, Y. and Mizutani, K. (2002) Antioxidative Components of Psoralea corylifolia (Leguminosae). Phytotherapy Research, 16, 539-544. https://doi.org/10.1002/ptr.972 |
[2] |
Guo, J.N., et al. (2005) Antioxidants from a Chinese Medicinal Herb—Psoralea corylifolia L. Food Chemistry, 91, 287-292. https://doi.org/10.1016/j.foodchem.2004.04.029 |
[3] |
Wang, D., Li, F. and Jiang, Z. (2001) Osteoblastic Proliferation Stimulating Activity of Psoralea corylifolia Extracts and Two of Its Flavonoids. Planta Medica, 67, 748-749. https://doi.org/10.1055/s-2001-18343 |
[4] |
Cho, H., Jun, J., Song, E., Kang, K., Baek, H., Ko, Y., et al. (2001) Bakuchiol: A Hepatoprotective Compound of Psoralea corylifolia on Tacrine-Induced Cytotoxicity in Hep G2 Cells. Planta Medica, 67, 750-751. https://doi.org/10.1055/s-2001-18347 |
[5] |
Chung, Y.C., Song, S.J., Lee, A., Jang, C.H., Kim, C. and Hwang, Y. (2024) Isobavachin, a Main Bioavailable Compound in Psoralea corylifolia, Alleviates Lipopolysaccharide-Induced Inflammatory Responses in Macrophages and Zebrafish by Suppressing the MAPK and NF-κB Signaling Pathways. Journal of Ethnopharmacology, 321, Article ID: 117501. https://doi.org/10.1016/j.jep.2023.117501 |
[6] |
Torres, S.L., Arruda, M.S.P., Arruda, A.C., Müller, A.H. and Silva, S.C. (2000) Flavonoids from Brosimum acutifolium. Phytochemistry, 53, 1047-1050. https://doi.org/10.1016/s0031-9422(99)00608-1 |
[7] |
Li, W.D., Yan, C.P., Wu, Y., Weng, Z.B., Yin, F.Z., Yang, G.M., et al. (2014) Osteoblasts Proliferation and Differentiation Stimulating Activities of the Main Components of Fructus Psoraleae corylifoliae. Phytomedicine, 21, 400-405. https://doi.org/10.1016/j.phymed.2013.09.015 |
[8] |
Wätjen, W., Weber, N., Lou, Y., Wang, Z., Chovolou, Y., Kampkötter, A., et al. (2007) Prenylation Enhances Cytotoxicity of Apigenin and Liquiritigenin in Rat H4IIE Hepatoma and C6 Glioma Cells. Food and Chemical Toxicology, 45, 119-124. https://doi.org/10.1016/j.fct.2006.08.008 |
[9] |
Wu, C., Gao, M., Chen, J., Sun, X., Zhang, K., Dai, Y., et al. (2022) Isobavachalcone Induces Multiple Cell Death in Human Triple-Negative Breast Cancer MDA-MB-231 Cells. Molecules, 27, Article No. 6787. https://doi.org/10.3390/molecules27206787 |
[10] |
Matsuda, H., Kiyohara, S., Sugimoto, S., Ando, S., Nakamura, S. and Yoshikawa, M. (2009) Bioactive Constituents from Chinese Natural Medicines. XXXIII. Inhibitors from the Seeds of Psoralea corylifolia on Production of Nitric Oxide in Lipopolysaccharide-Activated Macrophages. Biological and Pharmaceutical Bulletin, 32, 147-149. https://doi.org/10.1248/bpb.32.147 |
[11] |
Nepal, M., Jung Choi, H., Choi, B., Lim Kim, S., Ryu, J., Hee Kim, D., et al. (2012) Anti-Angiogenic and Anti-Tumor Activity of Bavachinin by Targeting Hypoxia-Inducible Factor-1α. European Journal of Pharmacology, 691, 28-37. https://doi.org/10.1016/j.ejphar.2012.06.028 |
[12] |
Kim, T., Jung, J.W., Ha, B.G., Hong, J.M., Park, E.K., Kim, H., et al. (2011) The Effects of Luteolin on Osteoclast Differentiation, Function in Vitro and Ovariectomy-Induced Bone Loss. The Journal of Nutritional Biochemistry, 22, 8-15. https://doi.org/10.1016/j.jnutbio.2009.11.002 |
[13] |
Park, S.B., Lee, Y.J. and Chung, C.K. (2010) Bone Mineral Density Changes after Ovariectomy in Rats as an Osteopenic Model: Stepwise Description of Double Dorso-Lateral Approach. Journal of Korean Neurosurgical Society, 48, Article No. 309. https://doi.org/10.3340/jkns.2010.48.4.309 |
[14] |
Shiraishi, A., Miyabe, S., Nakano, T., Umakoshi, Y., Ito, M. and Mihara, M. (2009) The Combination Therapy with Alfacalcidol and Risedronate Improves the Mechanical Property in Lumbar Spine by Affecting the Material Properties in an Ovariectomized Rat Model of Osteoporosis. BMC Musculoskeletal Disorders, 10, Article No. 66. https://doi.org/10.1186/1471-2474-10-66 |
[15] |
Riggs, B.L., Khosla, S. and Melton, L.J. (2002) Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocrine Reviews, 23, 279-302. https://doi.org/10.1210/edrv.23.3.0465 |
[16] |
Ducy, P., Schinke, T. and Karsenty, G. (2000) The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science, 289, 1501-1504. https://doi.org/10.1126/science.289.5484.1501 |
[17] |
Sozen, T., Ozisik, L. and Calik Basaran, N. (2017) An Overview and Management of Osteoporosis. European Journal of Rheumatology, 4, 46-56. https://doi.org/10.5152/eurjrheum.2016.048 |
[18] |
Lin, J.T. and Lane, J.M. (2004) Osteoporosis. Clinical Orthopaedics and Related Research, 425, 126-134. https://doi.org/10.1097/01.blo.0000132404.30139.f2 |
[19] |
Wang, X., Chen, B., Sun, J., Jiang, Y., Zhang, H., Zhang, P., et al. (2018) Iron-Induced Oxidative Stress Stimulates Osteoclast Differentiation via NF-κB Signaling Pathway in Mouse Model. Metabolism, 83, 167-176. https://doi.org/10.1016/j.metabol.2018.01.005 |
[20] |
Rensvold, J.W., Krautkramer, K.A., Dowell, J.A., Denu, J.M. and Pagliarini, D.J. (2016) Iron Deprivation Induces Transcriptional Regulation of Mitochondrial Biogenesis. Journal of Biological Chemistry, 291, 20827-20837. https://doi.org/10.1074/jbc.m116.727701 |
[21] |
Gattermann, N. (2016) Iron Rusting in the Mitochondria? Blood, 128, 1907-1908. https://doi.org/10.1182/blood-2016-08-732966 |
[22] |
Li, T., Du, Y., Yao, H., Zhao, B., Wang, Z., Chen, R., et al. (2024) Isobavachin Attenuates Osteoclastogenesis and Periodontitis-Induced Bone Loss by Inhibiting Cellular Iron Accumulation and Mitochondrial Biogenesis. Biochemical Pharmacology, 224, Article ID: 116202. https://doi.org/10.1016/j.bcp.2024.116202 |
[23] |
Guzik, T., Korbut, R. and Adamek-Guzik, T. (2003) Nitric Oxide and Superoxide in Inflammation. Journal of Physiology and Pharmacology, 54, 469-487. |
[24] |
Hirayama, D., Iida, T. and Nakase, H. (2017) The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. International Journal of Molecular Sciences, 19, Article No. 92. https://doi.org/10.3390/ijms19010092 |
[25] |
Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-κB Signaling in Inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 17023. https://doi.org/10.1038/sigtrans.2017.23 |
[26] |
Kany, S., Vollrath, J.T. and Relja, B. (2019) Cytokines in Inflammatory Disease. International Journal of Molecular Sciences, 20, Article No. 6008. https://doi.org/10.3390/ijms20236008 |
[27] |
Dehlin, M., Jacobsson, L. and Roddy, E. (2020) Global Epidemiology of Gout: Prevalence, Incidence, Treatment Patterns and Risk Factors. Nature Reviews Rheumatology, 16, 380-390. https://doi.org/10.1038/s41584-020-0441-1 |
[28] |
Pasalic, D., Marinkovic, N. and Feher-Turkovic, L. (2012) Uric Acid as One of the Important Factors in Multifactorial Disorders-Facts and Controversies. Biochemia Medica, 22, 63-75. |
[29] |
Keenan, R.T. (2020) The Biology of Urate. Seminars in Arthritis and Rheumatism, 50, S2-S10. https://doi.org/10.1016/j.semarthrit.2020.04.007 |
[30] |
Chen, X., Zhao, Z., Luo, J., Wu, T., Shen, Y., Chang, S., et al. (2021) Novel Natural Scaffold as hURAT1 Inhibitor Identified by 3d-Shape-Based, Docking-Based Virtual Screening Approach and Biological Evaluation. Bioorganic Chemistry, 117, Article ID: 105444. https://doi.org/10.1016/j.bioorg.2021.105444 |
[31] |
Bibert, S., Hess, S.K., Firsov, D., Thorens, B., Geering, K., Horisberger, J., et al. (2009) Mouse GLUT9: Evidences for a Urate Uniporter. American Journal of Physiology-Renal Physiology, 297, F612-F619. https://doi.org/10.1152/ajprenal.00139.2009 |
[32] |
Zhao, Z., Luo, J., Liao, H., Zheng, F., Chen, X., Luo, J., et al. (2023) Pharmacological Evaluation of a Novel Skeleton Compound Isobavachin (4’,7-Dihydroxy-8-Prenylflavanone) as a Hypouricemic Agent: Dual Actions of URAT1/GLUT9 and Xanthine Oxidase Inhibitory Activity. Bioorganic Chemistry, 133, Article ID: 106405. https://doi.org/10.1016/j.bioorg.2023.106405 |
[33] |
Zhao, Z., Chen, X., Luo, J., Chen, M., Luo, J., Chen, J., et al. (2024) Design, Synthesis and Bioactivity Evaluation of Isobavachin Derivatives as hURAT1 Inhibitors for Hyperuricemia Agents. European Journal of Medicinal Chemistry, 277, Article ID: 116753. https://doi.org/10.1016/j.ejmech.2024.116753 |