[1] |
Tan, F., Cao, W., Li, X. and Li, Q. (2024) Characteristics, Relationships, and Anatomical Basis of Leaf Hydraulic Traits and Economic Traits in Temperate Desert Shrub Species. Life, 14, Article 834. https://doi.org/10.3390/life14070834 |
[2] |
Brodribb, T.J. and Jordan, G.J. (2011) Water Supply and Demand Remain Balanced during Leaf Acclimation of Nothofagus Cunninghamii Trees. New Phytologist, 192, 437-448. https://doi.org/10.1111/j.1469-8137.2011.03795.x |
[3] |
Xiong, D., Yu, T., Zhang, T., Li, Y., Peng, S. and Huang, J. (2014) Leaf Hydraulic Conductance Is Coordinated with Leaf Morpho-Anatomical Traits and Nitrogen Status in the Genus Oryza. Journal of Experimental Botany, 66, 741-748. https://doi.org/10.1093/jxb/eru434 |
[4] |
Simonin, K.A., Limm, E.B. and Dawson, T.E. (2012) Hydraulic Conductance of Leaves Correlates with Leaf Lifespan: Implications for Lifetime Carbon Gain. New Phytologist, 193, 939-947. https://doi.org/10.1111/j.1469-8137.2011.04014.x |
[5] |
Martin, B. and Thorstenson, Y.R. (1988) Stable Carbon Isotope Composition (δ13C), Water Use Efficiency, and Biomass Productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid. Plant Physiology, 88, 213-217. https://doi.org/10.1104/pp.88.1.213 |
[6] |
刘明光. 中国自然地理图集[M]. 北京: 中国地图出版社, 2010. |
[7] |
高新生, 胡欣欣, 李廷, 李维国, 黄肖. 巴西橡胶树5个主栽品种幼苗叶片的解剖结构及光合特性研究[J]. 西南林业大学学报(自然科学), 2021, 41(3): 31-36. |
[8] |
陈雪梅, 王友保. 浅谈叶片结构对环境的适应[J]. 安徽农学通报, 2007, 13(19): 80-81. |
[9] |
曹佳乐, 樊军锋, 周永学, 等. 4个白杨派新无性系叶片解剖结构的研究[J]. 西北林学院学报, 2016, 31(4): 129-133. |
[10] |
李晓储, 黄利斌, 张永兵, 等. 四种含笑叶解剖性状与抗旱性的研究[J]. 林业科学研究, 2006, 19(2): 53-57. |
[11] |
Oliveira, I., Meyer, A., Afonso, S. and Gonçalves, B. (2018) Compared Leaf Anatomy and Water Relations of Commercial and Traditional Prunus dulcis (Mill.) Cultivars under Rain-Fed Conditions. Scientia Horticulturae, 229, 226-232. https://doi.org/10.1016/j.scienta.2017.11.015 |
[12] |
Xiong, D. and Flexas, J. (2022) Safety-Efficiency Tradeoffs? Correlations of Photosynthesis, Leaf Hydraulics, and Dehydration Tolerance across Species. Oecologia, 200, 51-64. https://doi.org/10.1007/s00442-022-05250-4 |
[13] |
何小三, 王玉娟, 徐林初, 龚春, 俞元春. 干旱胁迫对不同油茶品种叶片解剖结构的影响[J]. 中南林业科技大学学报, 2020, 40(10): 1-17. |
[14] |
Mediavilla, S., Escudero, A. and Heilmeier, H. (2001) Internal Leaf Anatomy and Photosynthetic Resource-Use Efficiency: Interspecific and Intraspecific Comparisons. Tree Physiology, 21, 251-259. https://doi.org/10.1093/treephys/21.4.251 |
[15] |
吴一苓, 李芳兰, 胡慧. 叶脉结构与功能及其对叶片经济谱的影响[J]. 植物学报, 2022, 57(3): 388-398. |
[16] |
Hua, L., He, P., Goldstein, G., Liu, H., Yin, D., Zhu, S., et al. (2019) Linking Vein Properties to Leaf Biomechanics across 58 Woody Species from a Subtropical Forest. Plant Biology, 22, 212-220. https://doi.org/10.1111/plb.13056 |
[17] |
Sack, L. and Holbrook, N.M. (2006) Leaf Hydraulics. Annual Review of Plant Biology, 57, 361-381. https://doi.org/10.1146/annurev.arplant.56.032604.144141 |
[18] |
Carins Murphy, M.R., Jordan, G.J. and Brodribb, T.J. (2012) Differential Leaf Expansion Can Enable Hydraulic Acclimation to Sun and Shade. Plant, Cell & Environment, 35, 1407-1418. https://doi.org/10.1111/j.1365-3040.2012.02498.x |
[19] |
Sack, L., Scoffoni, C., John, G.P., Poorter, H., Mason, C.M., Mendez-Alonzo, R., et al. (2013) How Do Leaf Veins Influence the Worldwide Leaf Economic Spectrum? Review and Synthesis. Journal of Experimental Botany, 64, 4053-4080. https://doi.org/10.1093/jxb/ert316 |
[20] |
徐龙, 贺鹏程, 张统, 刘慧, 叶清. 不同原生境的6种棕榈科植物叶片水力性状的对比研究[J]. 热带亚热带植物学报, 2020, 28(5): 472-478. |
[21] |
Nardini, A., Pedá, G. and Salleo, S. (2012) Alternative Methods for Scaling Leaf Hydraulic Conductance Offer New Insights into the Structure—Function Relationships of Sun and Shade Leaves. Functional Plant Biology, 39, 394-401. https://doi.org/10.1071/fp12020 |
[22] |
Scoffoni, C., Rawls, M., McKown, A., Cochard, H. and Sack, L. (2011) Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture. Plant Physiology, 156, 832-843. https://doi.org/10.1104/pp.111.173856 |
[23] |
Nardini, A. and Salleo, S. (2005) Water Stress-Induced Modifications of Leaf Hydraulic Architecture in Sunflower: Co-Ordination with Gas Exchange. Journal of Experimental Botany, 56, 3093-3101. https://doi.org/10.1093/jxb/eri306 |
[24] |
Blackman, C.J., Brodribb, T.J. and Jordan, G.J. (2009) Leaf Hydraulics and Drought Stress: Response, Recovery and Survivorship in Four Woody Temperate Plant Species. Plant, Cell & Environment, 32, 1584-1595. https://doi.org/10.1111/j.1365-3040.2009.02023.x |
[25] |
Lo Gullo, M.A., Raimondo, F., Crisafulli, A., Salleo, S. and Nardini, A. (2010) Leaf Hydraulic Architecture and Water Relations of Three Ferns from Contrasting Light Habitats. Functional Plant Biology, 37, 566-574. https://doi.org/10.1071/fp09303 |