[1] |
Jadhav, D., B.N., R., Gogate, P.R. and Rathod, V.K. (2009) Extraction of Vanillin from Vanilla Pods: A Comparison Study of Conventional Soxhlet and Ultrasound Assisted Extraction. Journal of Food Engineering, 93, 421-426. https://doi.org/10.1016/j.jfoodeng.2009.02.007 |
[2] |
Zheng, M., Lai, H. and Lin, K.A. (2018) Valorization of Vanillyl Alcohol by Pigments: Prussian Blue Analogue as a Highly-Effective Heterogeneous Catalyst for Aerobic Oxidation of Vanillyl Alcohol to Vanillin. Waste and Biomass Valorization, 10, 2933-2942. https://doi.org/10.1007/s12649-018-0280-3 |
[3] |
Hernández-Vázquez, E., Castañeda-Arriaga, R., Ramírez-Espinosa, J.J., Medina-Campos, O.N., Hernández-Luis, F., Chaverri, J.P., et al. (2015) 1,5-Diarylpyrazole and Vanillin Hybrids: Synthesis, Biological Activity and DFT Studies. European Journal of Medicinal Chemistry, 100, 106-118. https://doi.org/10.1016/j.ejmech.2015.06.010 |
[4] |
Hernández-Vázquez, E., Salgado-Barrera, S., Ramírez-Espinosa, J.J., Estrada-Soto, S. and Hernández-Luis, F. (2016) Synthesis and Molecular Docking of N’-Arylidene-5-(4-Chlorophenyl)-1-(3,4-Dichlorophenyl)-4-Methyl-1h-Pyrazole-3-Carbohydrazides as Novel Hypoglycemic and Antioxidant Dual Agents. Bioorganic & Medicinal Chemistry, 24, 2298-2306. https://doi.org/10.1016/j.bmc.2016.04.007 |
[5] |
Ogawa, K., Tashima, A., Sadakata, M. and Morinaga, O. (2018) Appetite-Enhancing Effects of Vanilla Flavours Such as Vanillin. Journal of Natural Medicines, 72, 798-802. https://doi.org/10.1007/s11418-018-1206-x |
[6] |
Burri, J., Graf, M., Lambelet, P. and Löliger, J. (1989) Vanillin: More than a Flavouring Agent—A Potent Antioxidant. Journal of the Science of Food and Agriculture, 48, 49-56. https://doi.org/10.1002/jsfa.2740480107 |
[7] |
Liaqat, F., Xu, L., Khazi, M.I., Ali, S., Rahman, M.U. and Zhu, D. (2023) Extraction, Purification, and Applications of Vanillin: A Review of Recent Advances and Challenges. Industrial Crops and Products, 204, Article ID: 117372. https://doi.org/10.1016/j.indcrop.2023.117372 |
[8] |
Dalmolin, L.F., Khalil, N.M. and Mainardes, R.M. (2016) Delivery of Vanillin by Poly(lactic-Acid) Nanoparticles: Development, Characterization and in Vitro Evaluation of Antioxidant Activity. Materials Science and Engineering: C, 62, 1-8. https://doi.org/10.1016/j.msec.2016.01.031 |
[9] |
Thevenon, A., Garden, J.A., White, A.J.P. and Williams, C.K. (2015) Dinuclear Zinc Salen Catalysts for the Ring Opening Copolymerization of Epoxides and Carbon Dioxide or Anhydrides. Inorganic Chemistry, 54, 11906-11915. https://doi.org/10.1021/acs.inorgchem.5b02233 |
[10] |
Kiran, K., Sarasija, M., Ananda Rao, B., et al. (2019) Design, Synthesis, and Biological Activity of New Bis-1,2,3-Triazole Derivatives Bearing Thiophene-Chalcone Moiety. Russian Journal of General Chemistry, 89, 1859-1866. |
[11] |
Wang, Y., Luo, Y., Hu, D. and Song, B. (2022) Design, Synthesis, Anti-Tomato Spotted Wilt Virus Activity, and Mechanism of Action of Thienopyrimidine-Containing Dithioacetal Derivatives. Journal of Agricultural and Food Chemistry, 70, 6015-6025. https://doi.org/10.1021/acs.jafc.2c00773 |
[12] |
Zhao, L., Hu, D., Wu, Z., Wei, C., Wu, S. and Song, B. (2022) Coumarin Derivatives Containing Sulfonamide and Dithioacetal Moieties: Design, Synthesis, Antiviral Activity, and Mechanism. Journal of Agricultural and Food Chemistry, 70, 5773-5783. https://doi.org/10.1021/acs.jafc.2c00672 |
[13] |
Zhu, L., Zhu, X. and Wu, Y. (2022) Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules, 12, Article No. 580. https://doi.org/10.3390/biom12040580 |
[14] |
Gazolla, P.A.R., de Aguiar, A.R., Costa, M.C.A., Oliveira, O.V., Costa, A.V., da Silva, C.M., et al. (2023) Synthesis of Vanillin Derivatives with 1,2,3‐Triazole Fragments and Evaluation of Their Fungicide and Fungistatic Activities. Archiv der Pharmazie, 356, Article ID: 2200653. https://doi.org/10.1002/ardp.202200653 |
[15] |
Jung, H.A., Jung, Y.J., Hyun, S.K., Min, B., Kim, D., Jung, J.H., et al. (2010) Selective Cholinesterase Inhibitory Activities of a New Monoterpene Diglycoside and Other Constituents from Nelumbo Nucifera Stamens. Biological and Pharmaceutical Bulletin, 33, 267-272. https://doi.org/10.1248/bpb.33.267 |
[16] |
Liu, Y., Zhu, J., Yu, J., Chen, X., Zhang, S., Cai, Y., et al. (2021) A New Functionality Study of Vanillin as the Inhibitor for Α-Glucosidase and Its Inhibition Kinetic Mechanism. Food Chemistry, 353, Article ID: 129448. https://doi.org/10.1016/j.foodchem.2021.129448 |
[17] |
Wang, H. and Zhang, H. (2018) Reconsideration of Anticholinesterase Therapeutic Strategies against Alzheimer’s Disease. ACS Chemical Neuroscience, 10, 852-862. https://doi.org/10.1021/acschemneuro.8b00391 |
[18] |
Avetyan, D.L., Shatskiy, A., Kärkäs, M.D. and Stepanova, E.V. (2022) Scalable Total Synthesis of Natural Vanillin-Derived Glucoside Ω-Esters. Carbohydrate Research, 522, Article ID: 108683. https://doi.org/10.1016/j.carres.2022.108683 |
[19] |
Stepanova, E.V., Belyanin, M.L. and Filimonov, V.D. (2014) Synthesis of Acyl Derivatives of Salicin, Salirepin, and Arbutin. Carbohydrate Research, 388, 105-111. https://doi.org/10.1016/j.carres.2014.02.014 |
[20] |
Arca, H.C., Mosquera-Giraldo, L.I., Bi, V., Xu, D., Taylor, L.S. and Edgar, K.J. (2018) Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules, 19, 2351-2376. https://doi.org/10.1021/acs.biomac.8b00517 |
[21] |
Kar, S.S., Bhat, V.G., Shenoy, V.P., Bairy, I. and Shenoy, G.G. (2018) Design, Synthesis, and Evaluation of Novel Diphenyl Ether Derivatives against Drug‐Susceptible and Drug‐Resistant Strains of Mycobacterium tuberculosis. Chemical Biology & Drug Design, 93, 60-66. https://doi.org/10.1111/cbdd.13379 |
[22] |
Zhu, Y., Mampuys, P., Sergeyev, S., Ballet, S. and Maes, B.U.W. (2017) Amine Activation: n‐Arylamino Acid Amide Synthesis from Isothioureas and Amino Acids. Advanced Synthesis & Catalysis, 359, 2481-2498. https://doi.org/10.1002/adsc.201700134 |
[23] |
Hu, S., Wang, Y., Wang, K., Yang, D., Chen, L., An, Z., et al. (2024) Design, Synthesis, and Herbicidal Activity of Pyrazole Amide Derivatives as Potential Transketolase Inhibitors. Journal of Agricultural and Food Chemistry, 72, 3334-3341. https://doi.org/10.1021/acs.jafc.3c06306 |
[24] |
Chen, L., Xie, J., Song, H., Liu, Y., Gu, Y., Wang, L., et al. (2016) Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. Journal of Agricultural and Food Chemistry, 64, 6508-6516. https://doi.org/10.1021/acs.jafc.6b02683 |
[25] |
Aggarwal, N., Kumar, R., Srivastva, C., Dureja, P. and Khurana, J.M. (2010) Synthesis of Nalidixic Acid Based Hydrazones as Novel Pesticides. Journal of Agricultural and Food Chemistry, 58, 3056-3061. https://doi.org/10.1021/jf904144e |
[26] |
Luo, D., Guo, S., He, F., Chen, S., Dai, A., Zhang, R., et al. (2020) Design, Synthesis, and Bioactivity of Α-Ketoamide Derivatives Bearing a Vanillin Skeleton for Crop Diseases. Journal of Agricultural and Food Chemistry, 68, 7226-7234. https://doi.org/10.1021/acs.jafc.0c00724 |
[27] |
Scipioni, M., Kay, G., Megson, I. and Kong Thoo Lin, P. (2018) Novel Vanillin Derivatives: Synthesis, Anti-Oxidant, DNA and Cellular Protection Properties. European Journal of Medicinal Chemistry, 143, 745-754. https://doi.org/10.1016/j.ejmech.2017.11.072 |
[28] |
Kumar, A., Singh, V., Mishra, A.K., Singh, H., Parvez, S., Sonu, et al. (2025) Synthesis, Characterization and Computational Studies of Some New Vanillin Derivatives for Cosmetic Purpose. Journal of Molecular Structure, 1327, Article ID: 141127. https://doi.org/10.1016/j.molstruc.2024.141127 |
[29] |
Ho, K., Yazan, L.S., Ismail, N. and Ismail, M. (2009) Apoptosis and Cell Cycle Arrest of Human Colorectal Cancer Cell Line HT-29 Induced by Vanillin. Cancer Epidemiology, 33, 155-160. https://doi.org/10.1016/j.canep.2009.06.003 |
[30] |
Birar, V.C., Zaid, G. and Blagg, B.S.J. (2021) Reaction between Harmaline and Vanillin to Produce Dimeric Scaffolds That Exhibit Anti-Proliferative Activity. Tetrahedron Letters, 73, Article ID: 153139. https://doi.org/10.1016/j.tetlet.2021.153139 |
[31] |
Narode, H., Gayke, M., Bhosale, R.S., Eppa, G., Gohil, N., Bhattacharjee, G., et al. (2022) Vanillin Containing 9h-Fluoren Sulfone Scaffolds: Synthesis, Biological Evaluation and Molecular Docking Study. Results in Chemistry, 4, Article ID: 100269. https://doi.org/10.1016/j.rechem.2021.100269 |
[32] |
Rais-Bahrami, K., Majd, M., Veszelovszky, E. and Short, B.L. (2004) Use of Furosemide and Hearing Loss in Neonatal Intensive Care Survivors. American Journal of Perinatology, 21, 329-332. https://doi.org/10.1055/s-2004-831887 |
[33] |
Duarte, J.D. and Cooper-DeHoff, R.M. (2010) Mechanisms for Blood Pressure Lowering and Metabolic Effects of Thiazide and Thiazide-Like Diuretics. Expert Review of Cardiovascular Therapy, 8, 793-802. https://doi.org/10.1586/erc.10.27 |
[34] |
Huang, F. and Batey, R.A. (2007) Cross-Coupling of Organoboronic Acids and Sulfinate Salts Using Catalytic Copper(II) Acetate and 1,10-Phenanthroline: Synthesis of Aryl and Alkenylsulfones. Tetrahedron, 63, 7667-7672. https://doi.org/10.1016/j.tet.2007.05.029 |
[35] |
Chen, J., Shi, J., Yu, L., Liu, D., Gan, X., Song, B., et al. (2018) Design, Synthesis, Antiviral Bioactivity, and Defense Mechanisms of Novel Dithioacetal Derivatives Bearing a Strobilurin Moiety. Journal of Agricultural and Food Chemistry, 66, 5335-5345. https://doi.org/10.1021/acs.jafc.8b01297 |
[36] |
Shao, S., Cheng, X., Zheng, R., Zhang, S., Yu, Z., Wang, H., et al. (2022) Sex-Related Deposition and Metabolism of Vanisulfane, a Novel Vanillin-Derived Pesticide, in Rats and Its Hepatotoxic and Gonadal Effects. Science of the Total Environment, 813, Article ID: 152545. https://doi.org/10.1016/j.scitotenv.2021.152545 |
[37] |
Liu, D., Song, R., Wu, Z., Xing, Z. and Hu, D. (2022) Pyrido [1,2-a] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism. Journal of Agricultural and Food Chemistry, 70, 10443-10452. https://doi.org/10.1021/acs.jafc.2c01838 |
[38] |
Raghavan, S., Manogaran, P., Kalpattu Kuppuswami, B., Venkatraman, G. and Gadepalli Narasimha, K.K. (2015) Synthesis and Anticancer Activity of Chalcones Derived from Vanillin and Isovanillin. Medicinal Chemistry Research, 24, 4157-4165. https://doi.org/10.1007/s00044-015-1453-2 |
[39] |
Kamal, A., Ramakrishna, G., Raju, P., Viswanath, A., Janaki Ramaiah, M., Balakishan, G., et al. (2010) Synthesis and Anti-Cancer Activity of Chalcone Linked Imidazolones. Bioorganic & Medicinal Chemistry Letters, 20, 4865-4869. https://doi.org/10.1016/j.bmcl.2010.06.097 |
[40] |
Chinh, L., Hung, T., Nga, N., phong, L., Huong, L., Ha, T., et al. (2014) New Chalcones Containing Nucleosides Exhibiting in Vitro Anti-Cancer Activities. Letters in Organic Chemistry, 11, 534-545. https://doi.org/10.2174/1570178611666140401221121 |
[41] |
Gupta, S.C., Kismali, G. and Aggarwal, B.B. (2013) Curcumin, a Component of Turmeric: From Farm to Pharmacy. BioFactors, 39, 2-13. https://doi.org/10.1002/biof.1079 |
[42] |
Lou, M., Li, S., Jin, F., Yang, T., Song, R. and Song, B. (2024) Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective. Engineering, 43, 241-257. https://doi.org/10.1016/j.eng.2024.06.015 |
[43] |
Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. and Miao, Z. (2017) Chalcone: A Privileged Structure in Medicinal Chemistry. Chemical Reviews, 117, 7762-7810. https://doi.org/10.1021/acs.chemrev.7b00020 |
[44] |
Fitzgerald, D.J., Stratford, M., Gasson, M.J. and Narbad, A. (2005) Structure-Function Analysis of the Vanillin Molecule and Its Antifungal Properties. Journal of Agricultural and Food Chemistry, 53, 1769-1775. https://doi.org/10.1021/jf048575t |
[45] |
Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I. and Bahorun, T. (2005) Phenolics as Potential Antioxidant Therapeutic Agents: Mechanism and Actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579, 200-213. https://doi.org/10.1016/j.mrfmmm.2005.03.023 |
[46] |
Yemis, G.P., Pagotto, F., Bach, S. and Delaquis, P. (2011) Effect of Vanillin, Ethyl Vanillin, and Vanillic Acid on the Growth and Heat Resistance of Cronobacter Species. Journal of Food Protection, 74, 2062-2069. https://doi.org/10.4315/0362-028x.jfp-11-230 |
[47] |
Pohl, F., Goua, M., Bermano, G., Russell, W.R., Scobbie, L., Maciel, P., et al. (2018) Revalorisation of Rapeseed Pomace Extracts: An in Vitro Study into Its Anti-Oxidant and DNA Protective Properties. Food Chemistry, 239, 323-332. https://doi.org/10.1016/j.foodchem.2017.06.129 |
[48] |
Commey, L., Mechref, Y., Burow, M. and Mendu, V. (2024) Identification and Characterization of Peanut Seed Coat Secondary Metabolites Inhibiting Aspergillus flavus Growth and Reducing Aflatoxin Contamination. Journal of Agricultural and Food Chemistry, 72, 23844-23858. https://doi.org/10.1021/acs.jafc.4c05517 |
[49] |
Lv, B., Zhang, X., Wang, Y., Wu, W., Li, D. and Hu, Z. (2024) Discovery of the Chlorinated and Ammoniated Derivatives of Vanillin as Potential Insecticidal Candidates Targeting V-Atpase: Structure-Based Virtual Screening, Synthesis, and Bioassay. Journal of Agricultural and Food Chemistry, 72, 20872-20881. https://doi.org/10.1021/acs.jafc.4c05174 |