LncRNA与脂代谢在结直肠癌中的研究进展
Research Progress of LncRNA and Lipid Metabolism in Colorectal Cancer
DOI: 10.12677/bp.2025.151012, PDF, HTML, XML,    科研立项经费支持
作者: 赵明俊*, 张振东, 杜予心, 王小平#:西藏民族大学医学院,陕西 咸阳
关键词: 长链非编码RNA脂代谢结直肠癌分子标志物LncRNA Lipid Metabolism Colorectal Cancer Molecular Markers
摘要: 长链非编码RNA (lncRNA)是长度超过200个核苷酸的功能性非编码RNA,与癌症等多种严重危害人类健康的重大疾病密切相关。LncRNA可通过多种机制发挥广泛的调控作用,作为癌基因或抑癌基因调节肿瘤细胞的增殖、侵袭和转移等,进而调控肿瘤的发生、发展。而结直肠癌是我国一类常见的恶性肿瘤。LncRNA还是脂代谢的关键调节因子,可以调节肿瘤细胞的脂肪从头合成和脂肪酸氧化,进而影响结直肠癌进展。此外,lncRNA还参与调控结直肠癌中多条信号通路的表达,从而调节其脂代谢,对结直肠癌细胞的生物学活性产生影响。本文总结梳理近些年关于lncRNA在结直肠癌脂代谢中的调控作用,特别是在脂代谢关键酶及相关信号通路中的研究。此外,我们还讨论了lncRNA在结直肠癌诊断、治疗及预后的前景,为结直肠癌及消化道肿瘤的防治研究及临床应用提供新的思路。
Abstract: Long non-coding RNA (lncRNA) is functional non-coding RNA with a length of more than 200 nucleotides, which are closely associated with a variety of serious diseases that seriously endanger human health, such as cancer. LncRNA can play a wide range of regulatory roles through a variety of mechanisms, acting as oncogenes or tumor suppressors to regulate the proliferation, invasion, and metastasis of tumor cells, and so on, and then regulate the occurrence and development of tumors. Colorectal cancer is one of the most common malignant tumors in China. LncRNA is also a key regulator of lipid metabolism, which can regulate the de novo synthesis of fat in tumour cells, alter lipid storage and fatty acid oxidation, and thus affect the progression of colorectal cancer. In addition, lncRNA is also involved in regulating the expression of multiple signaling pathways in colorectal cancer, thereby regulating their lipid metabolism, and influencing the biological activity of colorectal cancer cells. In this review, we summarize and sort out the regulatory roles of lncRNA in lipid metabolism of colorectal cancer in recent years, especially in key enzymes of lipid metabolism and signaling pathways related to lipid metabolism. In addition, we discuss the prospects of lncRNA in the diagnosis, therapy and prognosis of colorectal cancer, and provide new ideas for the prevention and therapy research and clinical application of colorectal cancer.
文章引用:赵明俊, 张振东, 杜予心, 王小平. LncRNA与脂代谢在结直肠癌中的研究进展[J]. 生物过程, 2025, 15(1): 86-91. https://doi.org/10.12677/bp.2025.151012

1. 引言

结直肠癌(colorectal cancer, CRC)是我国一种常见的恶性肿瘤[1]。最新的癌症报告显示,我国CRC发病率和死亡率位列所有癌症的第四位[2]。通过大量临床随访数据比较得出,早期CRC癌患者接受治疗后的5年生存率 ≥ 90%,相较于中晚期患者的5年生存率有较大幅度的提高[3]。然而当患者确诊CRC时往往已经进展至中晚期,大部分患者由此失去了治疗疾病的最佳时机和方式,最终只能以放化疗为主。因此,寻找新的筛查策略和治疗方法来提高CRC早期诊出率、提升治疗效果及改善预后,减轻CRC负担显得至关重要。脂代谢失调是CRC最突出的代谢改变之一[4],随着分子生物学和基因组学的发展,发现癌症的发生、进展和转移与长链非编码RNA (long non-coding RNA, lncRNA)密切相关[5]。lncRNA可以调控脂质代谢关键转录因子的表达,通过与脂质代谢相关的基因和蛋白质相互作用,参与调节脂肪酸合成、氧化、储存以及脂肪组织的分化,进而影响CRC进展[6]。此外,lncRNA与脂代谢在CRC发生发展过程中还参与多条信号通路的表达。本文就lncRNA与脂代谢在CRC中的研究进展作一综述,旨在为CRC的治疗、提高患者早期诊断率及生存率提供更多的参考。

2. LncRNA与脂代谢概述

LncRNA是一类长度超过200个核苷酸的非编码RNA分子,它们不编码蛋白质,但在细胞内发挥着多种重要的生物学功能且与人类癌症发生高度相关,可通过多种机制发挥广泛的调控作用,成为基因表达网络中的重要调节因子[7],且可以作为竞争性内源RNA海绵吸收miRNA,调节基因表达,从而改变脂代谢,调节肿瘤进展[8]。同时,lncRNA具有无创、便捷、高灵敏、高特异性等特点被认为是CRC潜在的诊断、治疗及预后标志物[9]

脂质是一类广泛存在于生物体内的有机化合物,除了作为储能物质外,还在细胞膜的结构、信号传递、激素合成等方面发挥着关键作用[10]。肿瘤细胞中的脂代谢是近年来研究的热点,其改变主要包括脂肪酸合成(fatty acid synthesis, FAS)及氧化[11]。FAS有多种限速酶参与,比如脂肪酸合成酶,硬脂酰-CoA去饱和酶-1等,脂肪酸氧化的关键酶是肉碱棕榈酰转移酶1 [12],这些关键酶与多种信号通路相关,在肿瘤进展中扮演着重要角色。此外,脂代谢中关键的脂质转录因子对于肿瘤的进展也很重要,脂质转录因子的激活使FAS增加[13],从而促进肿瘤的发生发展。而lncRNA可以通过调节脂质转录因子、关键酶及信号通路[14],从而调控FAS,进一步影响CRC的进展。由此可见,CRC细胞的增殖涉及到复杂的脂代谢调节和lncRNA对其的调控。综上我们推测lncRNA可以改变CRC细胞中的脂代谢,可能是CRC潜在诊断标志物及治疗和预后靶点。

3. 结直肠癌中的LncRNA与脂代谢

3.1. LncRNA与脂代谢转录因子及其关键酶调节CRC脂代谢

SLC 25线粒体载体家族可以参与癌症的发展[15]。SLC 25 A21-AS 1为棕榈酸相关的lncRNA,该lncRNA可被棕榈酸显著下调,SLC 25 A21-AS 1的敲低抑制食管鳞状细胞癌的增殖和迁移[16]。我们考虑SLC 25 A21-AS 1在CRC中具有食管鳞状细胞癌相似的作用,这需要进一步通过实验来进行验证。

You等[17]通过比较CRC患者的CRC组织和周围正常组织中线粒体顺乌头酸酶ACO2的表达水平,得出大部分CRC病例ACO2表达水平显著下调,敲低ACO2显著促进了裸鼠肿瘤的形成。同时,在ACO2低水平表达下,硬脂酰-CoA去饱和酶-1表达上调,FAS增加,肉碱棕榈酰转移酶1的抑制作用降低,促进β-氧化和肿瘤进展。我们猜想是否存在一种lncRNA来靶向调控ACO2或硬脂酰-CoA去饱和酶-1,进而调控肿瘤。

甾醇调节元件结合蛋白(sterol regulatory element binding protein, SREBP)是在脂代谢中起核心作用的转录因子,SREBP-1a、SREBP-1c和SREBP2三种分型存在于哺乳动物细胞中[18]。SREBP在鳞状细胞癌组织中均高度表达,FAS增多,进而加速肿瘤的演进[19]。同样,SREBP在CRC中具有一定的调控作用[20]。Wen等[21]研究发现SREBP介导的FAS增加会使CRC细胞快速增殖。由于SREBP介导脂质生成,小鼠体内实验结果也证实了SREBP1或SREBP2的敲除抑制结肠癌细胞FAS,所以结肠癌组织中SREBP1或SREBP2低表达的结肠癌患者体内脂肪酸因此下降,从而抑制结肠癌细胞增殖。所以,SREBP靶向脂质合成可能为结肠癌患者提供了一种新型且有前景的治疗策略。lncHR1和lncRNA NEAT1可以抑制SREBP的表达[14] [22],在肝癌中已经得到证实,因此我们猜想CRC细胞中的脂代谢也具有相似作用,但这需要进一步实验研究来验证。

3.2. LncRNA通过信号通路影响脂代谢及CRC进程

小核仁RNA宿主基因16 (Small nucleolar RNA host gene 16, SNHG16)是一种定位于17q25.1的lncRNA,研究[23]显示,SNHG16在CRC中靶向Wnt信号通路促进脂肪合成,起到致癌作用。此外,SNHG16在CRC中的异常表达与预后不良有关[24]。因此,SNHG16可能成为一个有前景的肿瘤生物标志物和治疗靶点。LncRNA H19是一种最初被描述为癌胚转录本的lncRNA,如今称其为致癌基因。进行荧光素酶报告基因测定可知,miR-29b-3p可以靶向颗粒前体蛋白(progranulin, PGRN)以减少其表达,改变下游Wnt信号转导,从而显著抑制EMT进程。综上,H19靶向miR-29-3b/PGRN/Wnt信号通路可能参与了CRC上皮间质转化的发生发展进程[25],这对探索CRC新的诊断标志物和治疗靶点有很大帮助。

肺癌相关转录物1 (Lung cancer-associated transcript 1, LUCAT1)是一种新型lncRNA [26]。Zhou [27]等人通过对比研究CRC患者的CRC组织和相邻正常组织中的LUCAT1表达水平,发现LUCAT1在CRC组织中的表达量高于邻近正常组织。实验表明LUCAT1可以增加CRC细胞活力,敲低LUCAT1后CRC细胞数量减少,所以LUCAT1表达上调会增加CRC细胞增殖。LUCAT1的表达与p53信号通路高度相关,且敲低LUCAT1后,抑癌基因p53的表达在蛋白质水平上受到诱导,表明低表达的LUCAT1可能会影响p53的稳定性,诱导CRC细胞周期停滞和凋亡,抑制CRC的演进。

长非编码RNA小核仁RNA宿主基因10 (SNHG 10)在肿瘤中起到癌基因的作用。通过生物信息学分析SNHG 10的潜在靶miRNA之一是miR-3690。Zhang [28]等人通过细胞实验发现miR-3690在CRC中显著下调。敲低SNHG 10可以上调miR-3690的表达,从而抑制CRC细胞的恶性进展。所有上述结果表明SNHG 10与miR-3690相互作用并调节其在人CRC细胞中的表达,我们大胆猜测SNHG 10下调,miR-3690下调时CRC组织脂肪含量会减少,抑制CRC细胞的增殖和侵袭,从而延缓CRC进展。以上假设需要接下来完善小鼠体内实验进行验证。因此SNHG 10/miR-3690信号轴可能为CRC的治疗提供新的靶点。

3.3. LncRNA在CRC诊断、治疗及预后中的前景

总的来说,SLC 25 A1通过重编程能量代谢在促进CRC生长中起关键作用。它有望成为大肠癌诊断和治疗的新靶点。在使用cDNA微阵列测试的67名食管鳞癌患者中,SLC 25 A21-AS 1高表达的患者预后不佳。因此,我们认为未来可以通过研究验证SLC 25 A21-AS 1作为CRC预后指标的假设。

LUCAT1在CRC组织中上调与CRC患者预后不良呈正相关。对原发性CRC患者研究结果[25]发现,H19表达上调,miR-29b-3p的表达降低,且H19靶向miR-29b-3p抑制其表达,因此H19下调会抑制CRC细胞增殖,延缓CRC进展,对CRC治疗有积极意义。术后H19的检测也是预测患者预后的方法之一。通过上述研究,我们可知H19是调节CRC脂质代谢的重要分子标志物,利于CRC的诊断、治疗、预后。综上所述,我们绘制了下图进行总结并引出我们如下思考(图1),关于lncRNA与脂代谢如何共同参与调节以调控CRC生长仍有许多需要探索的内容,通过以上总结与分析为未来找到更多的可信赖的lncRNA,用于CRC的早期诊断、治疗及预后监测中。

Figure 1. Research progress of lncRNA and lipid metabolism in colorectal cancer

1. LncRNA与脂代谢在结直肠癌中的研究进展

4. 总结与展望

研究表明lncRNA在CRC发展历程中一直扮演着重要作用。本文总结了lncRNA与脂代谢相关转录因子,关键酶及信号通路对CRC的调控作用,并探讨了其在CRC诊断、治疗及预后方面的效果。目前已知的lncRNA主要是在肝癌中发挥作用[29],影响FAS表达及脂肪酸氧化等生物效应,并在肝癌的治疗和预后评估中展现出潜在价值[30]。同时,脂代谢的核心转录因子已被证实可以影响CRC脂代谢和肿瘤进程,但lncRNA是否在结直肠癌等其他消化道肿瘤中也能发挥与肝癌类似的作用仍需进一步探讨,这一发现对我们寻找更多更新的CRC治疗方法很有帮助。此外,lncRNA可以介导多条信号通路,调节CRC脂代谢,从而影响CRC进程,对CRC的诊断、治疗及预后的研究均有价值。然而,其具体机制仍需深入研究,以便识别更多影响癌细胞脂代谢的分子靶标,为CRC的诊断、治疗和预后提供更多依据。

基金项目

国家自然科学基金(No. 82460515),中央引导地方科技发展资金项目(No. LSKJ202447),咸阳市科技计划重点研发项目(No. L2024-ZDYF-SF-0025),西藏民族大学研究生科研创新与实践项目(No. Y2025140)和2024年国家级、自治区级大学生创新创业训练计划项目(No. 202410695028, No. s202410695086)资助。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Jin, R., Luo, Z., Jun-Li,, Tao, Q., Wang, P., Cai, X., et al. (2023) USP20 Is a Predictor of Poor Prognosis in Colorectal Cancer and Associated with Lymph Node Metastasis, Immune Infiltration and Chemotherapy Resistance. Frontiers in Oncology, 13, Article 1023292.
https://doi.org/10.3389/fonc.2023.1023292
[2] 滕熠, 张晓丹, 夏昌发, 等. 中国与全球癌症发病、死亡和患病对比及其预测分析: GLOBOCAN 2022数据解读[J]. 中华肿瘤防治杂志, 2024, 31(23): 1413-1420.
[3] 陈万青, 李霓, 兰平, 等. 中国结直肠癌筛查与早诊早治指南(2020, 北京) [J]. 中国肿瘤, 2021, 30(1): 1-28.
[4] Broadfield, L.A., Pane, A.A., Talebi, A., Swinnen, J.V. and Fendt, S. (2021) Lipid Metabolism in Cancer: New Perspectives and Emerging Mechanisms. Developmental Cell, 56, 1363-1393.
https://doi.org/10.1016/j.devcel.2021.04.013
[5] Duan, Y., Yan, Y., Fu, H., et al. (2024) SNHG15-Mediated Feedback Loop Interplays with HNRNPA1/SLC7A11/GPX4 Pathway to Promote Gastric Cancer Progression. Cancer Science, 115, 2269-2285.
[6] Lin, Y., Xiao, Y., Liu, S., Hong, L., Shao, L. and Wu, J. (2022) Role of a Lipid Metabolism-Related LncRNA Signature in Risk Stratification and Immune Microenvironment for Colon Cancer. BMC Medical Genomics, 15, Article No. 221.
https://doi.org/10.1186/s12920-022-01369-8
[7] Chodurska, B. and Kunej, T. (2025) Long Non-Coding RNAs in Humans: Classification, Genomic Organization and Function. Non-Coding RNA Research, 11, 313-327.
https://doi.org/10.1016/j.ncrna.2025.01.004
[8] Peng, X., Yang, R., Wang, C., Peng, W., Zhao, Z., Shi, S., et al. (2025) The YTHDF3-DT/miR-301a-3p /INHBA Axis Attenuates Autophagy-Dependent Ferroptosis in Lung Adenocarcinoma. Cancer Letters, 613, Article ID: 217503.
https://doi.org/10.1016/j.canlet.2025.217503
[9] Tan, S., Li, S., Xia, L., Jiang, X., Ren, Z., Peng, Q., et al. (2025) Long Noncoding RNA ABHD11-AS1 Inhibits Colorectal Cancer Progression through Interacting with EGFR to Suppress the EGFR/ERK Signaling Pathway. International Journal of Oncology, 66, Article No. 20.
https://doi.org/10.3892/ijo.2025.5726
[10] Huang, X., Hou, S., Li, Y., Xu, G., Xia, N., Duan, Z., et al. (2025) Targeting Lipid Metabolism via Nanomedicine: A Prospective Strategy for Cancer Therapy. Biomaterials, 317, Article ID: 123022.
https://doi.org/10.1016/j.biomaterials.2024.123022
[11] Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2020) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606.
https://doi.org/10.1084/jem.20201606
[12] Li, H., Feng, Z. and He, M. (2020) Lipid Metabolism Alteration Contributes to and Maintains the Properties of Cancer Stem Cells. Theranostics, 10, 7053-7069.
https://doi.org/10.7150/thno.41388
[13] Sun, Q., Yu, X., Peng, C., Liu, N., Chen, W., Xu, H., et al. (2020) Activation of SREBP-1c Alters Lipogenesis and Promotes Tumor Growth and Metastasis in Gastric Cancer. Biomedicine & Pharmacotherapy, 128, Article ID: 110274.
https://doi.org/10.1016/j.biopha.2020.110274
[14] Lin, W., Zhou, Q., Wang, C., Zhu, L., Bi, C., Zhang, S., et al. (2020) LncRNAs Regulate Metabolism in Cancer. International Journal of Biological Sciences, 16, 1194-1206.
https://doi.org/10.7150/ijbs.40769
[15] Liu, A., Liu, Y., Shen, S., Yan, L., Lv, Z., Ding, H., et al. (2022) Comprehensive Analysis and Validation of Solute Carrier Family 25 (SLC25) and Its Correlation with Immune Infiltration in Pan‐Cancer. BioMed Research International, 2022, Article ID: 4009354.
https://doi.org/10.1155/2022/4009354
[16] Liu, Y., Li, C., Fang, L., Wang, L., Liu, H., Tian, H., et al. (2022) Lipid Metabolism-Related lncRNA SLC25A21-AS1 Promotes the Progression of Oesophageal Squamous Cell Carcinoma by Regulating the NPM1/c‐Myc Axis and SLC25A21 Expression. Clinical and Translational Medicine, 12, e944.
https://doi.org/10.1002/ctm2.944
[17] You, X., Tian, J., Zhang, H., Guo, Y., Yang, J., Zhu, C., et al. (2021) Loss of Mitochondrial Aconitase Promotes Colorectal Cancer Progression via SCD1-Mediated Lipid Remodeling. Molecular Metabolism, 48, Article ID: 101203.
https://doi.org/10.1016/j.molmet.2021.101203
[18] Mejia, J.C. and Pasko, J. (2020) Primary Liver Cancers. Surgical Clinics of North America, 100, 535-549.
https://doi.org/10.1016/j.suc.2020.02.013
[19] Li, L., Yang, Q., Jiang, Y., Yang, W., Jiang, Y., Li, X., et al. (2021) Interplay and Cooperation between SREBF1 and Master Transcription Factors Regulate Lipid Metabolism and Tumor-Promoting Pathways in Squamous Cancer. Nature Communications, 12, Article No. 4362.
https://doi.org/10.1038/s41467-021-24656-x
[20] Liu, Y., Hua, W., Li, Y., Xian, X., Zhao, Z., Liu, C., et al. (2020) Berberine Suppresses Colon Cancer Cell Proliferation by Inhibiting the SCAP/SREBP-1 Signaling Pathway-Mediated Lipogenesis. Biochemical Pharmacology, 174, Article ID: 113776.
https://doi.org/10.1016/j.bcp.2019.113776
[21] Wen, Y., Xiong, X., Zaytseva, Y.Y., Napier, D.L., Vallee, E., Li, A.T., et al. (2018) Downregulation of SREBP Inhibits Tumor Growth and Initiation by Altering Cellular Metabolism in Colon Cancer. Cell Death & Disease, 9, Article No. 265.
https://doi.org/10.1038/s41419-018-0330-6
[22] Li, D., Cheng, M., Niu, Y., Chi, X., Liu, X., Fan, J., et al. (2017) Identification of a Novel Human Long Non-Coding RNA That Regulates Hepatic Lipid Metabolism by Inhibiting SREBP-1c. International Journal of Biological Sciences, 13, 349-357.
https://doi.org/10.7150/ijbs.16635
[23] Christensen, L.L., True, K., Hamilton, M.P., Nielsen, M.M., Damas, N.D., Damgaard, C.K., et al. (2016) SNHG16 Is Regulated by the Wnt Pathway in Colorectal Cancer and Affects Genes Involved in Lipid Metabolism. Molecular Oncology, 10, 1266-1282.
https://doi.org/10.1016/j.molonc.2016.06.003
[24] Gong, C., Tang, R., Nan, W., Zhou, K. and Zhang, H. (2020) Role of SNHG16 in Human Cancer. Clinica Chimica Acta, 503, 175-180.
https://doi.org/10.1016/j.cca.2019.12.023
[25] Ding, D., Li, C., Zhao, T., et al. (218) LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on WNT Signaling. Molecules and Cells, 41, 423-435.
[26] Xing, C., Sun, S., Yue, Z. and Bai, F. (2021) Role of LncRNA LUCAT1 in Cancer. Biomedicine & Pharmacotherapy, 134, Article ID: 111158.
https://doi.org/10.1016/j.biopha.2020.111158
[27] Zhou, Q., Hou, Z., Zuo, S., Zhou, X., Feng, Y., Sun, Y., et al. (2019) lucat1 Promotes Colorectal Cancer Tumorigenesis by Targeting the Ribosomal Protein L40-MDM2-p53 Pathway through Binding with uba52. Cancer Science, 110, 1194-1207.
https://doi.org/10.1111/cas.13951
[28] Zhang, H., Fang, Z., Guo, Y. and Wang, D. (2021) Long Noncoding RNA SNHG10 Promotes Colorectal Cancer Cells Malignant Progression by Targeting Mir-3690. Bioengineered, 12, 6010-6020.
https://doi.org/10.1080/21655979.2021.1972199
[29] Wang, F., Hu, E., Li, J., Ouyang, J., Liu, X. and Xing, X. (2024) High-Throughput Proteomics Reveals a Novel Small Open Reading Frame-Encoded Peptide That Promotes Hepatocellular Carcinoma Invasion and Migration. Journal of Proteome Research, 24, 777-785.
https://doi.org/10.1021/acs.jproteome.4c00862
[30] Hall, Z., Chiarugi, D., Charidemou, E., Leslie, J., Scott, E., Pellegrinet, L., et al. (2020) Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology, 73, 1028-1044.
https://doi.org/10.1002/hep.31391

Baidu
map