抗菌肽发现的策略及进展
Discovery Strategies and Advances in Antimicrobial Peptides
摘要: 随着抗生素的不合理使用,微生物耐药性问题日益严重,成为人类健康的巨大威胁。世界卫生组织(WHO)和美国传染病学会(IDSA)已将抗生素耐药问题列为威胁公共卫生的三大问题之一,迫切需要发现新型抗菌物质。抗菌肽是一类具有广谱抗菌活性、低耐药性倾向和多种作用机制的天然小分子,具有抗多重耐药菌、抗真菌、抗病毒、抗癌等多种生物活性,在治疗疾病方面有广阔的应用前景。由于氨基酸的多样性排列以及复杂的结构,发现、识别和筛选抗菌肽十分困难。计算机技术和人工智能的发展使抗菌肽的挖掘方法取得进展。本文旨在系统总结抗菌肽发现方法的研究进展,为新型方法的应用提供参考,促进抗菌肽领域的创新和发展。
Abstract: With the irrational use of antibiotics, the problem of microbial resistance has become increasingly serious and a great threat to human health. The World Health Organization (WHO) and the Infectious Diseases Society of America (IDSA) have listed antibiotic resistance as one of the three major problems threatening public health, and there is an urgent need to discover new antibacterial substances. Antimicrobial peptides (AMPs), a class of natural small molecules with broad-spectrum antimicrobial activity, low resistance potential, and diverse mechanisms of action, exhibit various biological activities such as anti-multidrug-resistant bacteria, antifungal, antiviral, and anticancer properties, showing promising potential in disease treatment. However, the discovery, identification, and screening of AMPs are challenging due to the diverse arrangements of amino acids and their complex structures. Advances in computer technology and artificial intelligence have facilitated progress in AMPs mining methods. This article aims to systematically summarize the research progress in AMPs discovery methods, provide references for the application of novel approaches, and promote innovation and development in the field of antimicrobial peptides.
文章引用:席雅璇. 抗菌肽发现的策略及进展[J]. 生物过程, 2025, 15(1): 80-85. https://doi.org/10.12677/bp.2025.151011

1. 引言

近年来,多重耐药(Multidrug-resistant, MDR)病原体的全球蔓延引起了医学界的广泛关注[1]。多种抗生素的广泛使用使得细菌从单一抗生素耐药发展为多重耐药甚至泛耐药,临床治疗陷入困境[2]。MDR病原体的感染严重威胁人类健康,成为全球公共卫生面临的危机。新型抗生素的研发速度缓慢,寻找替代性抗生素成为治疗多重耐药菌的首要任务。

抗菌肽作为有潜力的小分子药物逐渐走进人们的视野。由于特殊的杀菌机制,具有较强的抗菌活性以及低耐药性[3]。抗菌肽的作用机制可分为两大类,包括靶向细菌细胞膜以及靶向细胞内靶点。大多数抗菌肽通过静电作用和细菌细胞膜接触。当肽和细胞膜磷脂足够接近时,范德华力和氢键就会发挥作用[4] [5]。因为这一特性,病原体不易对抗菌肽产生耐药性。

抗菌肽因其广谱抗菌活性和低耐药性,已成为新型抗菌药物的研究热点。传统上,天然抗菌肽主要通过实验技术挖掘。随着多组学技术和计算生物学的快速发展,机器学习与人工智能等算法逐渐应用于抗菌肽的发现[6]-[8]。本文系统总结了抗菌肽挖掘方法的研究进展及多种技术手段,为开发新型策略提供参考。

2. 抗菌肽的天然来源和挖掘方法

抗菌肽广泛存在于自然界中,来源于多种生物体。世界上第一个抗菌肽由1980年瑞典学者Boman等人在研究北美天蚕免疫机制时发现,他们用肠杆菌诱导天蚕蛹产生出了具有抗菌活性的多肽类物质,命名为天蚕素(Cecropins) [9]。此后相关学者相继在昆虫、甲壳动物、软体动物、两栖动物、哺乳动物、植物、细菌、古细菌、真菌等生物体内发现了具有抗菌活性的多肽。1987年,Zasloff等人偶然从非洲爪蛙Xenopus laevis的皮肤中发现了magainins,证实它是机体在无菌手术中避免细菌感染的原因[10]。Magainins具有广谱抗菌活性以及高选择毒性。此后相继发现多种蛙类抗菌肽,如B2RP [11]、Alyteserins [12]、PGLa-AM1 [13]、CPF片段[14]等。LL-37 [15]是源自人体的抗菌肽,最初发现于白细胞随后在其他细胞、体液中也分离出来,可以治疗多种感染性疾病。此外,人体中还有多种抗菌肽如防御素家族、组蛋白家族等。短吻鳄生活在充满细菌的环境中,Bishop等人在其血清中分离出抗菌肽AM-CATH36及其片段[16],被证明具有抗鲍曼活性。Bactenecin [17]是研究员从牛中性粒细胞中分离出的短肽,可以通过去极化和膜透化引起细菌细胞膜损伤。抗菌肽来源于几乎所有生物体,是进化过程中保存下来的化学物质,是生物机体天然免疫系统的重要组成部分。

传统上挖掘天然抗菌肽的方法主要是通过实验手段。将抗菌肽潜在来源的生物体作为研究对象,采集生物体的皮肤、组织或体液。通过溶剂提取、超声波破碎、酶解等方法,从收集到的样本中提取蛋白质或肽。对提取的肽进行抗菌活性筛选之后通过过滤或电泳等技术进行分离和纯化,之后进行结构分析和功能评价。

3. 抗菌肽的改造以及设计

天然抗菌肽具有广谱抗菌活性和低耐药倾向优势,但其在临床上的应用面临很多挑战。如有些抗菌肽易受蛋白酶降解、对真核细胞存在毒性(如蜂毒素),实验筛选成本高、技术难度大,这些因素严重限制了天然抗菌肽的开发。因此,该领域的研究员基于肽链长度、净电荷、两亲性、疏水性等基本结构参数,利用基因工程、固相液相合成技术等对天然抗菌肽进行了定向改造,通过人为调整参数产生了高效低毒性的抗菌肽[18]。目前,改造方法主要包括氨基酸残基的替换、序列截短、肽链环化等,聚焦于增强抗菌活性、降低细胞毒性以及提高结构稳定性。

3.1. 抗菌肽序列的改变

氨基酸残基的替换、删减是常用的改造手段。例如莱顿大学Breij [19]等人以LL-37为模板,通过C端氨基酸随机替换策略设计衍生肽,在维持α螺旋结构的前提下,将阴离子谷氨酰胺替换为阳离子精氨酸或赖氨酸来增加电荷量。经筛选获得高活性抗菌肽SAAP-148,其血浆蛋白酶抗性显著优于LL-37,稳定性提高。叶子凡[20]等人近期对绿海龟源抗菌肽Cm-CATH2进行结构优化,通过N/C端截短确定了最小活性核心片段,并采用L-鸟氨酸和D-氨基酸替换策略提高了蛋白酶抗性和血清稳定性。这表明截短优化结合氨基酸替换可以有效提高天然抗菌肽效能,得到更优质的肽段。需要注意的是,抗菌肽的结构参数具有相互依赖性,单一参数的优化会影响结构稳定性,进而导致活性降低。宋静[21]等人的研究证实了这一现象,在对W4的C端进行疏水性氨基酸标记时,仅疏水性最弱的丙氨酸能提升抗菌活性,而色氨酸和异亮氨酸标记则因改变二级结构而降低了活性。

3.2. 杂合抗菌肽

此外,杂合肽在抗菌肽分子的改造中应用也较为广泛。研究员综合考虑不同抗菌肽的活性以及毒性,将不同来源的保守序列拼接来获得高抗菌活性以及低毒性的抗菌肽。Wei [22]等人将Cecropin A的N端疏水区与LL-37的核心抗菌片段结合,构建的杂合肽C-L对所有测试菌株均表现出优于母肽的抗菌活性。蜂毒素(Melittin)具有较强抑菌活性,但其高溶血性限制了应用。相比之下人体防御素展现(HNP-1)出广谱抑菌活性且无显著溶血性。研究人员通过将蜂毒素C端的15个氨基酸片段与防御素片段融合通过酵母细胞表达,构建出的杂合肽有效提高了抗菌活性,同时降低了溶血性。

3.3. 抗菌肽环化

线性抗菌肽的环化有利于提高抗菌肽的稳定性。研究表明[23]植物来源的防御素SolyC07g007760在环化之后正电荷残基转移到转折区,提高了对革兰氏阴性菌的抗菌活性。吲哚啶素indolicidin衍生肽CP-11为U型骨架的两亲性分子,研究人员[24]通过二硫键介导使肽链环化,这使得远端正电荷氨基酸靠近,同时促进中间疏水性氨基酸侧链的堆积,提高了其蛋白酶抗性和结构稳定性。线性抗菌肽的环化可有效降低分子极性,通过减少外部氢键能力来增强膜渗透性。目前,环肽已成为具有潜力的多肽药物,研究人员正通过化学合成和计算设计进行开发。例如,Sanner团队[25]基于多肽优化算法,建立了二硫键和酰胺键环化的势能评分体系,实现多肽的环化和对接。

3.4. 抗菌肽修饰

通过引入化学基团也可以改变肽链的电荷性质和结构。Morris等人[26]对杂合抗菌肽CaLL的N端进行了聚乙二醇化处理,使其对肺部病原菌的半数抑制浓度提高了2~10倍,同时圆二色谱和荧光光谱测定结果显示,这一修饰不会影响和细菌膜作用时的构象变化。Chen [27]等人通过对猪源抗菌肽PMAP-37进行胆固醇修饰,使其产物Chol-37的活性提高。胆固醇作为膜磷脂的成分,提高了Chol-37与细胞膜的亲和力。

4. 基于计算机生物学的高通量挖掘

随着高通量基因组学、转录组学、蛋白质组学等多组学技术的快速发展,数据量急剧增长。仅依赖实验方法从海量样本中筛选和鉴定抗菌肽已难以满足需求。计算机技术的应用显著提升了抗菌肽的挖掘效率。研究人员通过计算机算法提取和处理数据,从数百万候选抗菌肽中预测并筛选出具有潜在活性的肽段,缩小范围后再进行实验验证,从而大幅提高了抗菌肽的发现效率[28]

4.1. 基于序列比对的方法

序列比对是一种较为简单的预测方法。基于已有的抗菌肽数据库作为模板,将待测候选抗菌肽序列和数据库进行序列比对,根据比对出的相似度来判断候选肽段是否具有抗菌活性。这一方法基于序列中氨基酸种类及排列对抗菌肽活性的重要性。其中BLASTP工具广泛使用。Wang [29]等人基于序列比对和特征选择方法预测抗菌肽。将待测肽通过序列比对归类到与其相似性最高的肽类别中。序列相似性通过匹配得分来量化,匹配得分越高,表明待测肽与数据库中肽的相似度越高。这种方法简单直接,易于实现。但缺乏对结构和功能的深入分析,准确度低,仍需进一步的实验方法来验证。

4.2. 定量构效关系模型

定量构效关系(Quantitative Structure-Activity Relationships, QSAR)模型也可以用来预测抗菌肽。该模型通过定量肽段的结构参数(如肽链长度、净电荷、两亲性、疏水性),借助统计方法量化结构参数与抗菌活性之间的关系,从而定量评估待测肽段的抗菌潜力。这种方法可以高效筛选出潜在的抗菌肽。例如Torres [30]等人通过整合净电荷、平均疏水性和序列长度等关键理化参数构建QSAR模型,定量预测了人体蛋白质组中具有抗菌活性的肽段,并通过实验验证了模型的可靠性,取得了63.6%的准确率。

4.3. 人工智能方法应用

人工智能是目前挖掘抗菌肽最精准有效的方法。其核心是利用已有数据库中的抗菌肽序列构建训练集,通过算法工具分析比较抗菌肽和非抗菌肽的差异,建立判别体系。通过多轮数据集的训练和优化,最终形成可以高效预测和筛选抗菌肽序列的模型。

AmPEP [31]是一种机器学习算法,基于随机森林进行预测筛选抗菌肽。该算法基于抗菌肽和非抗菌肽序列的理化特性建立随机森林分类器,通过交叉验证评估了19个具有不同正负数据比率的分类器,从中选出准确度高达96%的AmPEP来精准预测抗菌肽。抗菌肽中氨基酸的组成和排列具有一定的语法规则,Loose等人[32]通过对天然抗菌肽数据库APD进行模式识别和分析,找出了语法规则构建了语言模型来预测抗菌活性。在语言模型中,不同的氨基酸被看作英文字母,通过统一的字母表分析训练集的语义模式可以建立语法规则,从而预测抗菌肽的活性。

人工神经网络是一种深度学习模型,是模仿人大脑神经元处理传递信息的学习模型。通过对不同来源的抗菌肽进行训练,形成处理复杂问题的能力,并且可以在训练过程中估计误差,具有较高的容错率。王军等人[6]采用了自然语言学习的多种神经网络方法,不断优化和构建抗菌肽挖掘模型,利用宏基因组数据预测微生物组中的有效抗菌肽。通过实验验证最终得到181种有抗菌活性的肽段。

5. 局限性与展望

随着人工智能和计算生物学的发展,越来越多的高通量筛选方法涌现出来。这使得抗菌肽的挖掘更为高效和广泛。然而,许多预测出的抗菌肽在实际应用中表现出高抗菌活性的同时,也伴随着较高的毒性问题。这种高毒性限制了抗菌肽在临床中的广泛应用,尤其是治疗中的安全性。因此,当前的抗菌肽的预测模型急需进一步优化来更好地平衡抗菌活性与毒性之间的关系,进而筛选有临床应用潜力的抗菌肽。例如模型前期纳入的数据集需获取毒性数据,用来训练模型的毒性预测模块,将毒性作为重要评估指标。结合深度学习方法准确预测抗菌肽的毒性,从而在早期阶段排除高毒性候选肽。结合多种模型的预测结果,通过集成学习方法提升预测的准确性。未来抗菌肽的挖掘需要重点关注高活性、低毒性及蛋白酶抗性的综合筛选,以推动其临床实际应用。

参考文献

[1] Miller, W.R. and Arias, C.A. (2024) ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nature Reviews Microbiology, 22, 598-616.
https://doi.org/10.1038/s41579-024-01054-w
[2] Laxminarayan, R., Impalli, I., Rangarajan, R., Cohn, J., Ramjeet, K., Trainor, B.W., et al. (2024) Expanding Antibiotic, Vaccine, and Diagnostics Development and Access to Tackle Antimicrobial Resistance. The Lancet, 403, 2534-2550.
https://doi.org/10.1016/s0140-6736(24)00878-x
[3] Chen, N. and Jiang, C. (2023) Antimicrobial Peptides: Structure, Mechanism, and Modification. European Journal of Medicinal Chemistry, 255, Article ID: 115377.
https://doi.org/10.1016/j.ejmech.2023.115377
[4] Zasloff, M. (2002) Antimicrobial Peptides of Multicellular Organisms. Nature, 415, 389-395.
https://doi.org/10.1038/415389a
[5] Epand, R.M., Walker, C., Epand, R.F. and Magarvey, N.A. (2016) Molecular Mechanisms of Membrane Targeting Antibiotics. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1858, 980-987.
https://doi.org/10.1016/j.bbamem.2015.10.018
[6] Ma, Y., Guo, Z., Xia, B., Zhang, Y., Liu, X., Yu, Y., et al. (2022) Identification of Antimicrobial Peptides from the Human Gut Microbiome Using Deep Learning. Nature Biotechnology, 40, 921-931.
https://doi.org/10.1038/s41587-022-01226-0
[7] Alexander, P.J., Oyama, L.B., Olleik, H., Godoy Santos, F., O’Brien, S., Cookson, A., et al. (2024) Microbiome-Derived Antimicrobial Peptides Show Therapeutic Activity against the Critically Important Priority Pathogen, Acinetobacter baumannii. npj Biofilms and Microbiomes, 10, Article No. 92.
https://doi.org/10.1038/s41522-024-00560-2
[8] Santos-Júnior, C.D., Torres, M.D.T., Duan, Y., Rodríguez del Río, Á., Schmidt, T.S.B., Chong, H., et al. (2024) Discovery of Antimicrobial Peptides in the Global Microbiome with Machine Learning. Cell, 187, 3761-3778.e16.
https://doi.org/10.1016/j.cell.2024.05.013
[9] Boman, H.G., Nilsson, I. and Rasmuson, B. (1972) Inducible Antibacterial Defence System in Drosophila. Nature, 237, 232-235.
https://doi.org/10.1038/237232a0
[10] Zasloff, M. (1987) Magainins, a Class of Antimicrobial Peptides from Xenopus Skin: Isolation, Characterization of Two Active Forms, and Partial cDNA Sequence of a Precursor. Proceedings of the National Academy of Sciences of the United States of America, 84, 5449-5453.
https://doi.org/10.1073/pnas.84.15.5449
[11] Bevier, C.R., Sonnevend, A., Kolodziejek, J., Nowotny, N., Nielsen, P.F. and Michael Conlon, J. (2004) Purification and Characterization of Antimicrobial Peptides from the Skin Secretions of the Mink Frog (Rana septentrionalis). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 139, 31-38.
https://doi.org/10.1016/j.cca.2004.08.019
[12] Conlon, J.M., Demandt, A., Nielsen, P.F., Leprince, J., Vaudry, H. and Woodhams, D.C. (2009) The Alyteserins: Two Families of Antimicrobial Peptides from the Skin Secretions of the Midwife Toad Alytes Obstetricans (Alytidae). Peptides, 30, 1069-1073.
https://doi.org/10.1016/j.peptides.2009.03.004
[13] Conlon, J.M., Sonnevend, A., Pál, T. and Vila-Farrés, X. (2012) Efficacy of Six Frog Skin-Derived Antimicrobial Peptides against Colistin-Resistant Strains of the Acinetobacter baumannii Group. International Journal of Antimicrobial Agents, 39, 317-320.
https://doi.org/10.1016/j.ijantimicag.2011.12.005
[14] McLean, D.T.F., McCrudden, M.T.C., Linden, G.J., Irwin, C.R., Conlon, J.M. and Lundy, F.T. (2014) Antimicrobial and Immunomodulatory Properties of Pgla-Am1, CPF-AM1, and Magainin-Am1: Potent Activity against Oral Pathogens. Regulatory Peptides, 194, 63-68.
https://doi.org/10.1016/j.regpep.2014.11.002
[15] Neshani, A., Zare, H., Akbari Eidgahi, M.R., Kamali Kakhki, R., Safdari, H., Khaledi, A., et al. (2019) LL-37: Review of Antimicrobial Profile against Sensitive and Antibiotic-Resistant Human Bacterial Pathogens. Gene Reports, 17, Article ID: 100519.
https://doi.org/10.1016/j.genrep.2019.100519
[16] Barksdale, S.M., Hrifko, E.J. and van Hoek, M.L. (2017) Cathelicidin Antimicrobial Peptide from Alligator mississippiensis Has Antibacterial Activity against Multi-Drug Resistant Acinetobacter baumanii and Klebsiella pneumoniae. Developmental & Comparative Immunology, 70, 135-144.
https://doi.org/10.1016/j.dci.2017.01.011
[17] Zanetti, M., Litteri, L., Griffiths, G., Gennaro, R. and Romeo, D. (1991) Stimulus-Induced Maturation of Probactenecins, Precursors of Neutrophil Antimicrobial Polypeptides. The Journal of Immunology, 146, 4295-4300.
https://doi.org/10.4049/jimmunol.146.12.4295
[18] Michael Conlon, J., Galadari, S., Raza, H. and Condamine, E. (2008) Design of Potent, Non‐Toxic Antimicrobial Agents Based Upon the Naturally Occurring Frog Skin Peptides, Ascaphin‐8 and Peptide XT‐7. Chemical Biology & Drug Design, 72, 58-64.
https://doi.org/10.1111/j.1747-0285.2008.00671.x
[19] de Breij, A., Riool, M., Cordfunke, R.A., Malanovic, N., de Boer, L., Koning, R.I., et al. (2018) The Antimicrobial Peptide SAAP-148 Combats Drug-Resistant Bacteria and Biofilms. Science Translational Medicine, 10, eaan4044.
https://doi.org/10.1126/scitranslmed.aan4044
[20] Ye, Z., Xu, Z., Ouyang, J., Shi, W., Li, S., Wang, X., et al. (2024) Improving the Stability and Anti-Infective Activity of Sea Turtle Amps Using Multiple Structural Modification Strategies. Journal of Medicinal Chemistry, 67, 22104-22123.
https://doi.org/10.1021/acs.jmedchem.4c02039
[21] Song, J., Wang, J., Zhan, N., Sun, T., Yu, W., Zhang, L., et al. (2019) Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-tagging. ACS Applied Materials & Interfaces, 11, 43820-43834.
https://doi.org/10.1021/acsami.9b12706
[22] Wei, X., Wu, R., Si, D., Liao, X., Zhang, L. and Zhang, R. (2016) Novel Hybrid Peptide Cecropin a (1-8)-LL37 (17-30) with Potential Antibacterial Activity. International Journal of Molecular Sciences, 17, Article 983.
https://doi.org/10.3390/ijms17070983
[23] Avitabile, C., Capparelli, R., Rigano, M.M., Fulgione, A., Barone, A., Pedone, C., et al. (2013) Antimicrobial Peptides from Plants: Stabilization of the γ Core of a Tomato Defensin by Intramolecular Disulfide Bond. Journal of Peptide Science, 19, 240-245.
https://doi.org/10.1002/psc.2479
[24] Rozek, A., Powers, J.S., Friedrich, C.L. and Hancock, R.E.W. (2003) Structure-Based Design of an Indolicidin Peptide Analogue with Increased Protease Stability. Biochemistry, 42, 14130-14138.
https://doi.org/10.1021/bi035643g
[25] Zhang, Y. and Sanner, M.F. (2019) Docking Flexible Cyclic Peptides with Autodock CrankPep. Journal of Chemical Theory and Computation, 15, 5161-5168.
https://doi.org/10.1021/acs.jctc.9b00557
[26] Morris, C.J., Beck, K., Fox, M.A., Ulaeto, D., Clark, G.C. and Gumbleton, M. (2012) Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity While Improving Lung Tissue Biocompatibility Following Airway Delivery. Antimicrobial Agents and Chemotherapy, 56, 3298-3308.
https://doi.org/10.1128/aac.06335-11
[27] Chen, L., Shen, T., Liu, Y., Zhou, J., Shi, S., Wang, Y., et al. (2020) Enhancing the Antibacterial Activity of Antimicrobial Peptide PMAP-37(F34-R) by Cholesterol Modification. BMC Veterinary Research, 16, Article No. 419.
https://doi.org/10.1186/s12917-020-02630-x
[28] Yao, S., You, R., Wang, S., Xiong, Y., Huang, X. and Zhu, S. (2021) Netgo 2.0: Improving Large-Scale Protein Function Prediction with Massive Sequence, Text, Domain, Family and Network Information. Nucleic Acids Research, 49, W469-W475.
https://doi.org/10.1093/nar/gkab398
[29] Wang, P., Hu, L., Liu, G., Jiang, N., Chen, X., Xu, J., et al. (2011) Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods. PLOS ONE, 6, e18476.
https://doi.org/10.1371/journal.pone.0018476
[30] Torres, M.D.T., Melo, M.C.R., Crescenzi, O., Notomista, E. and de la Fuente-Nunez, C. (2021) Mining for Encrypted Peptide Antibiotics in the Human Proteome. Nature Biomedical Engineering, 6, 67-75.
https://doi.org/10.1038/s41551-021-00801-1
[31] Bhadra, P., Yan, J., Li, J., Fong, S. and Siu, S.W.I. (2018) AmPEP: Sequence-Based Prediction of Antimicrobial Peptides Using Distribution Patterns of Amino Acid Properties and Random Forest. Scientific Reports, 8, Article No. 1697.
https://doi.org/10.1038/s41598-018-19752-w
[32] Loose, C., Jensen, K., Rigoutsos, I. and Stephanopoulos, G. (2006) A Linguistic Model for the Rational Design of Antimicrobial Peptides. Nature, 443, 867-869.
https://doi.org/10.1038/nature05233

Baidu
map