铁死亡和脂质代谢在肝细胞癌中的研究进展
Advances in Ferroptosis and Lipid Metabolism in Hepatocellular Carcinoma
DOI: 10.12677/bp.2025.151008, PDF, HTML, XML,   
作者: 潘映妙:山东大学齐鲁医学院公共卫生学院生物统计学系,山东 济南
关键词: 铁死亡脂质代谢肝细胞癌Ferroptosis Lipid Metabolism Hepatocellular Carcinoma
摘要: 肝细胞癌(Hepatocellular carcinoma, HCC)隐匿性高,多数患者确诊时已处于中晚期,导致总体生存率低,预后不佳。铁死亡(Ferroptosis)是一种由铁依赖性致死水平的脂质过氧化引发,进而导致细胞出现特征性线粒体及坏死样变化的特殊死亡方式。脂质代谢(Lipid metabolism)在癌症发展进程中的重要性日益凸显,癌细胞生存、生长、增殖、侵袭和转移过程中所需的大量能量,依赖重新编程的脂质代谢提供支持。现有研究表明,铁死亡在HCC的生存和增殖中发挥着关键作用;脂质代谢与HCC的发生发展紧密相关,已成为HCC治疗的重要靶点。本文就近年来铁死亡和脂质代谢在HCC领域的研究进展作一综述,旨在为探寻HCC治疗的新靶点提供参考依据,以期为改善HCC患者的治疗效果和预后状况提供新思路。
Abstract: Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with high concealment. Most patients are diagnosed at an advanced stage, resulting in low overall survival rates and poor prognosis. Ferroptosis is a special mode of cell death characterized by iron-dependent lethal levels of lipid peroxidation, leading to characteristic mitochondrial and necrotic-like changes in cells. Lipid metabolism has increasingly been highlighted for its importance in cancer development. Cancer cells rely on reprogrammed lipid metabolism to support the large amounts of energy required for survival, growth, proliferation, invasion, and metastasis. Existing studies have shown that ferroptosis plays a key role in the proliferation, migration, and apoptosis of HCC; lipid metabolism is closely related to the occurrence and development of HCC and has become an important target for HCC treatment. This review summarizes the recent research progress of ferroptosis and lipid metabolism in the field of HCC, aiming to provide reference for exploring new targets for HCC treatment and to offer new ideas for improving the therapeutic effects and prognosis of HCC patients.
文章引用:潘映妙. 铁死亡和脂质代谢在肝细胞癌中的研究进展[J]. 生物过程, 2025, 15(1): 52-57. https://doi.org/10.12677/bp.2025.151008

1. 引言

肝细胞癌(Hepatocellular carcinoma, HCC)是最常见的原发性肝癌组织学类型。根据《全球癌症统计报告》,HCC是全球第六大常见恶性肿瘤,也是全球癌症相关死亡的第三大常见原因[1] [2]。由于HCC在早期阶段症状隐匿,许多患者在癌症晚期才被确诊[3]。尽管近年来多学科治疗和个性化精准医疗策略发展迅速,在早期诊断中发挥着越来越重要的主导作用,但HCC患者的总体生存率仍然很低[4]

铁死亡最初被发现是erastin和RSL3在RAS表达的癌细胞中诱导出的一种独特细胞死亡形式。这种类型的细胞死亡不具备凋亡的特征,也无法被caspase抑制剂逆转[5]。从机制上看,铁死亡由铁依赖性的致死水平脂质过氧化引发,会致使细胞出现特征性的线粒体变化和坏死样变化[5]。近年来,铁死亡在HCC发生、发展和治疗中的作用受到了越来越多的关注,有望成为HCC治疗的潜在靶点。

在癌症研究领域,改变的脂质代谢在癌症中的重要性正得到越来越广泛的认可[6] [7]。癌细胞在发育进程中,为满足生存、生长、增殖、侵袭和转移等需求,需要大量能量,而重新编程的脂质代谢为其提供了有力支持[8]。具体而言,癌细胞会增强脂质分解代谢和合成代谢,同时,利用脂质代谢来调控基质细胞和免疫细胞,从而抵抗治疗并促进复发[9]。肝脏在维持全身胆固醇和脂肪酸(Fatty acids, FAs)的稳态方面发挥着关键作用[10],这使得众多研究聚焦于HCC。代谢组学和脂质组学研究显示,在肿瘤发生期间,FAs的丰度发生显著改变,循环FAs的动态变化与肝脏病变恶化以及向HCC的进展以及肿瘤大小密切相关[11] [12]。目前,许多以脂质代谢为核心的酶正逐步成为研究热点,有望作为对抗HCC的有效靶点。

肝脏不仅是铁储存和代谢的主要场所,还是脂质代谢的重要器官[13]。本综述全面回顾了铁死亡和脂质代谢在HCC中的研究进展,旨在探讨铁死亡和脂质代谢相关基因作为生物标志物,在HCC治疗中所具有的应用前景,以期为临床治疗提供新的思路和方向。

2. 铁死亡在HCC发生发展中的作用

近年来,越来越多的研究聚焦于铁死亡与HCC之间的关系,结果表明,铁死亡能够通过影响癌细胞的增殖、迁移和凋亡等生物学特性,对HCC的发展起到调控作用。线粒体转运蛋白在HCC细胞中扮演着重要角色,它能够增强核因子E2相关因2 (Nuclear factor erythroid 2-related factor 2, Nrf2)依赖性抗氧化防御系统来抑制HCC细胞中的铁死亡,从而促进HCC的进展[14]。葡萄糖-6-磷酸脱氢酶同样与HCC密切相关,其高表达与患者不良预后相关[15] [16]。研究证实,它是与HCC不良结局相关的独立风险因素。其作用机制是通过抑制细胞色素P450氧化还原酶,加剧肿瘤的生长、侵袭和转移,同时减少铁死亡[15]。不过,也有物质能够抑制HCC的进展,重楼皂苷I便是其中之一。在小鼠体内实验中,当重楼皂苷I给药量为1.5 mg/kg时,与对照组相比,HCC肿瘤体积显著减小,并且它对HCC细胞的增殖、侵袭和转移具有剂量依赖性的抑制作用。其作用机制是通过提高ROS水平、促进二价铁离子(Fe2+)积累、消耗GSH,以及抑制GPX4的表达水平,从而诱导HCC细胞铁死亡的发生[17]

这些结果表明,诱导铁死亡具备成为HCC治疗策略的潜力。目前,已经有研究将靶向铁死亡抑制因子应用于HCC的治疗。有报道指出,沉默中心体蛋白290能够抑制HCC的生长和进展,其作用机制是通过激活Nrf2信号通路,促进铁死亡[18]。同样,α-烯醇化酶(α-Enolase 1, ENO1)作为一种RNA结合蛋白,会消除铁调节蛋白1的表达,进而抑制线粒体铁诱导的铁死亡,ENO1可作为HCC的潜在治疗靶点已在动物实验中得到验证[19]

除了上述对癌细胞生物学特性的影响,铁死亡还参与了HCC的血管生成。研究表明,在培养的人类HCC细胞中,miR-17-92簇能够增强细胞增殖、集落形成和侵袭能力[20]。作为一种致癌的微小RNA簇,miRNA-17-92通过下调长链酰基辅酶A合成酶4的表达,使血管内皮细胞免受erastin导致的铁死亡[21],从而推动HCC中的肿瘤血管生成。

综上所述,铁代谢失调和铁死亡与HCC的进展密切相关。尽管新发现的一些铁死亡相关调节因子已被证实能够调节HCC中的铁死亡,如多嘧啶束结合蛋白和原钙粘蛋白[22] [23],但铁死亡相关介质的调节机制及其下游信号通路仍有待进一步明确。在细胞凋亡抗性逐渐凸显的当下,铁死亡为癌症治疗提供了新的思路。

3. 异常脂质代谢与HCC

HCC的发生发展与脂质需求的显著增加紧密相关,甾醇调节元件结合蛋白1 (Sterol regulatory element binding protein, SREBP1)在其中发挥着不可或缺的作用[24] [25]。SREBP-1的失调往往是HCC出现的前期征兆,它与脂质代谢途径中的其他关键蛋白质共同成为研发前沿抗癌药物极具吸引力的靶点。当SREBP1被抑制时,会直接减少FAs的合成,进而降低肝脏中甘油三酯的水平,有效降低非酒精性脂肪性肝病向HCC进展的风险。Yin等人的研究发现,白桦脂醇能够抑制SREBP1。在实验中,给予肝内肿瘤小鼠白桦脂醇干预后,与未干预组相比,干预组小鼠FAs代谢下调,且HCC细胞增殖受到明显抑制,糖酵解活性降低,阻断了HCC细胞增殖所必需的糖酵解通量,有力地遏制了癌细胞的生长[26]。从SREBP2的角度来看,他汀类药物能够抑制其下游的限速酶3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR)的活性。已有研究表明,抑制HMGCR在抑制HCC细胞生长、降低发病风险方面具有积极作用[27]。综上所述,SREBP1和SREBP2有望成为对抗HCC的重要靶点,为临床治疗提供新的思路和策略。

脂肪酸合酶(Fatty acid synthase, FASN)是癌细胞合成大量磷脂所需FAs的关键酶[28] [29]。在细胞代谢过程中,FASN催化乙酰辅酶A和丙二酰辅酶A发生缩合反应,最终生成棕榈酸。FASN的过表达会导致饱和脂肪酸和单不饱和脂肪酸的产量显著增加。目前,C75、抑肽酶、奥利司他和TVB-2640等FASN抑制剂正在进行临床研究,以期为HCC治疗带来新的突破[30]-[32]。Huang等人的研究揭示,在HCC中,FASN的过表达与癌细胞的转移潜能密切相关。进一步研究发现,下调FASN的表达,HCC细胞的迁移和侵袭能力显著降低[29]。Li等人的研究则深入探讨了FASN表达与HCC细胞对索拉非尼耐药性之间的关系[33] [34]。研究表明,抑制FASN会直接导致SLC7A11表达下调,从而使索拉非尼能够有效诱导铁死亡,杀伤癌细胞;相反,FASN的过表达会增加SLC7A11的表达,阻碍索拉非尼诱导的铁死亡,导致癌细胞对索拉非尼产生耐药性。O’Farrell等人利用非酒精性脂肪性肝炎小鼠模型,对FASN的药理抑制作用展开研究[35]。结果显示,抑制FASN可使HCC肿瘤的形成减少85%,同时显著减少肝细胞中的脂肪沉积,改善肝纤维化状况,降低纤维化标志物水平。类似地,多项体内和体外研究均表明,奥利司他能够增加耐药细胞对索拉非尼的敏感性[36] [37],进一步证明了FASN在HCC治疗中的重要性,其有望与当前标准治疗药物索拉非尼协同作用,为HCC患者带来更好的治疗效果。

4. 铁死亡和脂质代谢在癌症中的相互作用

癌细胞在细胞死亡机制的执行上,通常存在一定缺陷。为满足快速生长的需求,相较于正常细胞,癌细胞对铁和脂质代谢水平的要求更高。然而,这种高需求使癌细胞更容易触发铁死亡。其中,脂质代谢失调在铁死亡以及肿瘤转移过程中扮演着关键角色。具体来看,胆固醇稳态的失衡与癌细胞对铁死亡的抗性紧密相关,进而增加了肿瘤发生和转移的几率。例如,当细胞长期处于27-羟基胆固醇(一种在血液循环中含量丰富的胆固醇代谢产物)的环境时,会筛选出部分细胞,这些细胞呈现出细胞摄取增强或脂质生物合成增多的现象,并且通过稳定GPX4,具备了更强的转移能力[38]。另一种胆固醇代谢产物7-脱氢胆固醇(7-Dehydrocholesterol, 7-DHC),同样与铁死亡敏感性密切相关。作为远端胆固醇生物合成的中间代谢物,7-DHC能够通过保护膜脂质不被自动氧化,从而抑制铁死亡[39]。研究发现,对7-DHC生物合成途径进行调控,会对铁死亡敏感性产生影响:操纵该途径,可增加细胞对铁死亡的敏感性;抑制7-DHC在胆固醇合成中的消耗,则会降低这种敏感性。在小鼠异种移植模型实验中,阻断7-DHC的生物合成后,肿瘤组织中的7-DHC水平下降,同时肿瘤生长也受到抑制[39]。这些研究结果共同表明,胆固醇稳态可能通过筛选出耐药细胞,对癌症发病机制产生作用;或者胆固醇中间体能够保护细胞免受铁死亡的影响,这凸显了胆固醇代谢在癌症进展和转移过程中的重要意义。此外,抑制载脂蛋白能够借助铁死亡途径重塑免疫抑制性肿瘤微环境(Tumor Micro Environment, TME),并改善HCC的抗程序性死亡受体1免疫疗法的效果[40]。在动物实验中,敲除携带HCC肿瘤小鼠的载脂蛋白基因后,肿瘤组织中M2型巨噬细胞比例下降,M1型巨噬细胞比例升高,同时机体免疫功能被激活,使用免疫疗法治疗组的肿瘤体积减小、重量减轻。而体外实验证实抑制载脂蛋白可以通过HCC中肿瘤相关巨噬细胞的铁死亡途径将M2型巨噬细胞逆转为M1型。由此可见,抑制载脂蛋白可激活铁死亡途径,二者共同作用,有可能在HCC的治疗中发挥抗肿瘤免疫作用。

不仅如此,癌细胞还可能选择性地将特定脂质种类融入细胞脂质库,以此调节自身的生长和转移潜能。Henry及其同事的研究表明,pB3乳腺癌细胞依赖于细胞膜所纳入的醚脂,来诱导癌症干细胞特性并实现转移[41]。这种方式使得乳腺癌细胞能够借助CD44,通过非网格蛋白包被小窝摄取铁,这是一种独特的铁获取途径。细胞内铁含量的提升赋予了癌细胞转移能力,但同时也使其更容易发生铁死亡。

综上所述,这些发现突出了TME中脂质代谢与铁代谢之间的复杂关系。这种关系既为癌细胞的生长提供了支持,同时又使癌细胞对铁死亡更为敏感,为深入理解癌症的发展机制以及探索新的治疗策略,提供了重要的方向。

5. 结论与展望

铁死亡作为一种较新发现的细胞死亡方式,在HCC的研究领域中备受关注,已成为研究热点,且在HCC的发生、发展进程里发挥关键作用。尽管众多研究已对铁死亡的生物学机制展开探讨,但其与肿瘤进展的关系仍存在诸多未知。不同的铁死亡诱导剂能够作用于铁死亡过程中的不同环节,进而对HCC的增殖、侵袭和转移产生影响。脂质代谢与HCC存在紧密且复杂的联系,是HCC治疗的重要靶点之一。脂质代谢的异常不仅为HCC细胞的快速增殖提供了所需的能量和物质基础,还在肿瘤细胞的侵袭、转移以及耐药性产生等方面发挥着重要作用。

如本综述所示,铁死亡和脂质代谢在癌症进展中的联系正在显现,需进一步探索这种联系背后的机制。探索铁死亡和脂质代谢之间的相互作用,寻找靶向治疗药物,如铁死亡诱导剂或脂质代谢抑制剂等,有望为HCC的治疗提供有效策略。

参考文献

[1] He, P., Wan, H., Wan, J., Jiang, H., Yang, Y., Xie, K., et al. (2022) Systemic Therapies in Hepatocellular Carcinoma: Existing and Emerging Biomarkers for Treatment Response. Frontiers in Oncology, 12, Article ID: 1015527.
https://doi.org/10.3389/fonc.2022.1015527
[2] Zhou, J., Li, L., Fang, L., Xie, H., Yao, W., Zhou, X., et al. (2016) Quercetin Reduces Cyclin D1 Activity and Induces G1 Phase Arrest in Hepg2 Cells. Oncology Letters, 12, 516-522.
https://doi.org/10.3892/ol.2016.4639
[3] Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/s0140-6736(22)01200-4
[4] Huang, Z., Xia, H., Cui, Y., Yam, J.W.P. and Xu, Y. (2022) Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 11, 207-218.
https://doi.org/10.14218/jcth.2022.00255
[5] Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2
[6] Gao, L., Xu, Z., Huang, Z., Tang, Y., Yang, D., Huang, J., et al. (2020) CPI-613 Rewires Lipid Metabolism to Enhance Pancreatic Cancer Apoptosis via the AMPK-ACC Signaling. Journal of Experimental & Clinical Cancer Research, 39, Article No. 73.
https://doi.org/10.1186/s13046-020-01579-x
[7] Liu, F., Ma, M., Gao, A., Ma, F., Ma, G., Liu, P., et al. (2021) PKM2‐TMEM33 Axis Regulates Lipid Homeostasis in Cancer Cells by Controlling SCAP Stability. The EMBO Journal, 40, e108065.
https://doi.org/10.15252/embj.2021108065
[8] Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2020) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606.
https://doi.org/10.1084/jem.20201606
[9] Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699.
https://doi.org/10.1016/j.cmet.2022.09.023
[10] Alves-Bezerra, M. and Cohen, D.E. (2017) Triglyceride Metabolism in the Liver. In: Comprehensive Physiology, John Wiley & Sons, 1-22.
[11] Muir, K., Hazim, A., He, Y., Peyressatre, M., Kim, D., Song, X., et al. (2013) Proteomic and Lipidomic Signatures of Lipid Metabolism in Nash-Associated Hepatocellular Carcinoma. Cancer Research, 73, 4722-4731.
https://doi.org/10.1158/0008-5472.can-12-3797
[12] Ismail, I.T., Elfert, A., Helal, M., Salama, I., El-Said, H. and Fiehn, O. (2020) Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers, 13, Article No. 88.
https://doi.org/10.3390/cancers13010088
[13] Huang, Y., Wang, S., Ke, A. and Guo, K. (2023) Ferroptosis and Its Interaction with Tumor Immune Microenvironment in Liver Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article ID: 188848.
https://doi.org/10.1016/j.bbcan.2022.188848
[14] Zhang, D., Man, D., Lu, J., Jiang, Y., Ding, B., Su, R., et al. (2023) Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Advanced Science, 10, Article ID: 2206669.
https://doi.org/10.1002/advs.202206669
[15] Cao, F., Luo, A. and Yang, C. (2021) G6PD Inhibits Ferroptosis in Hepatocellular Carcinoma by Targeting Cytochrome P450 Oxidoreductase. Cellular Signalling, 87, Article ID: 110098.
https://doi.org/10.1016/j.cellsig.2021.110098
[16] Zeng, T., Li, B., Shu, X., Pang, J., Wang, H., Cai, X., et al. (2023) Pan-Cancer Analysis Reveals That G6PD Is a Prognostic Biomarker and Therapeutic Target for a Variety of Cancers. Frontiers in Oncology, 13, Article ID: 1183474.
https://doi.org/10.3389/fonc.2023.1183474
[17] Yang, R., Gao, W., Wang, Z., Jian, H., Peng, L., Yu, X., et al. (2024) Polyphyllin I Induced Ferroptosis to Suppress the Progression of Hepatocellular Carcinoma through Activation of the Mitochondrial Dysfunction via Nrf2/HO-1/GPX4 Axis. Phytomedicine, 122, Article ID: 155135.
https://doi.org/10.1016/j.phymed.2023.155135
[18] Shan, Y., Yang, G., Lu, Q., Hu, X., Qi, D., Zhou, Y., et al. (2022) Centrosomal Protein 290 Is a Novel Prognostic Indicator That Modulates Liver Cancer Cell Ferroptosis via the Nrf2 Pathway. Aging, 14, 2367-2382.
https://doi.org/10.18632/aging.203946
[19] Zhang, T., Sun, L., Hao, Y., Suo, C., Shen, S., Wei, H., et al. (2021) ENO1 Suppresses Cancer Cell Ferroptosis by Degrading the mRNA of Iron Regulatory Protein 1. Nature Cancer, 3, 75-89.
https://doi.org/10.1038/s43018-021-00299-1
[20] Zhu, H., Han, C. and Wu, T. (2015) Mir-17-92 Cluster Promotes Hepatocarcinogenesis. Carcinogenesis, 36, 1213-1222.
https://doi.org/10.1093/carcin/bgv112
[21] Xiao, F., Zhang, D., Wu, Y., Jia, Q., Zhang, L., Li, Y., et al. (2019) miRNA-17-92 Protects Endothelial Cells from Erastin-Induced Ferroptosis through Targeting the A20-ACSL4 Axis. Biochemical and Biophysical Research Communications, 515, 448-454.
https://doi.org/10.1016/j.bbrc.2019.05.147
[22] Jun, L., Chen, W., Han, L., Yanmin, L., Qinglei, Z. and Pengfei, Z. (2023) Protocadherin 20 Promotes Ferroptosis by Suppressing the Expression of Sirtuin 1 and Promoting the Acetylation of Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocellular Carcinoma. The International Journal of Biochemistry & Cell Biology, 156, Article ID: 106363.
https://doi.org/10.1016/j.biocel.2023.106363
[23] Yang, H., Sun, W., Bi, T., Wang, Q., Wang, W., Xu, Y., et al. (2023) The PTBP1-NCOA4 Axis Promotes Ferroptosis in Liver Cancer Cells. Oncology Reports, 49, Article No. 45.
https://doi.org/10.3892/or.2023.8482
[24] Zhao, Q., Lin, X. and Wang, G. (2022) Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Frontiers in Oncology, 12, Article ID: 952371.
https://doi.org/10.3389/fonc.2022.952371
[25] Cheng, X., Li, J. and Guo, D. (2018) SCAP/SREBPs Are Central Players in Lipid Metabolism and Novel Metabolic Targets in Cancer Therapy. Current Topics in Medicinal Chemistry, 18, 484-493.
https://doi.org/10.2174/1568026618666180523104541
[26] Yin, F., Feng, F., Wang, L., Wang, X., Li, Z. and Cao, Y. (2019) SREBP-1 Inhibitor Betulin Enhances the Antitumor Effect of Sorafenib on Hepatocellular Carcinoma via Restricting Cellular Glycolytic Activity. Cell Death & Disease, 10, Article No. 672.
https://doi.org/10.1038/s41419-019-1884-7
[27] Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510.
https://doi.org/10.3389/fonc.2020.01510
[28] Menendez, J.A. and Lupu, R. (2017) Fatty Acid Synthase (FASN) as a Therapeutic Target in Breast Cancer. Expert Opinion on Therapeutic Targets, 21, 1001-1016.
https://doi.org/10.1080/14728222.2017.1381087
[29] Fhu, C.W. and Ali, A. (2020) Fatty Acid Synthase: An Emerging Target in Cancer. Molecules, 25, Article No. 3935.
https://doi.org/10.3390/molecules25173935
[30] Li, C., Zhang, L., Qiu, Z., Deng, W. and Wang, W. (2022) Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules, 12, Article No. 706.
https://doi.org/10.3390/biom12050706
[31] Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N. and Koike, K. (2018) Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 10, Article No. 447.
https://doi.org/10.3390/cancers10110447
[32] Menendez, J.A. and Lupu, R. (2007) Fatty Acid Synthase and the Lipogenic Phenotype in Cancer Pathogenesis. Nature Reviews Cancer, 7, 763-777.
https://doi.org/10.1038/nrc2222
[33] Wang, R., Liu, Z., Fan, Z. and Zhan, H. (2023) Lipid Metabolism Reprogramming of CD8+ T Cell and Therapeutic Implications in Cancer. Cancer Letters, 567, Article ID: 216267.
https://doi.org/10.1016/j.canlet.2023.216267
[34] Li, Y., Yang, W., Zheng, Y., Dai, W., Ji, J., Wu, L., et al. (2023) Targeting Fatty Acid Synthase Modulates Sensitivity of Hepatocellular Carcinoma to Sorafenib via Ferroptosis. Journal of Experimental & Clinical Cancer Research, 42, Article No. 6.
https://doi.org/10.1186/s13046-022-02567-z
[35] O’Farrell, M., Duke, G., Crowley, R., Buckley, D., Martins, E.B., Bhattacharya, D., et al. (2022) FASN Inhibition Targets Multiple Drivers of NASH by Reducing Steatosis, Inflammation and Fibrosis in Preclinical Models. Scientific Reports, 12, Article No. 15661.
https://doi.org/10.1038/s41598-022-19459-z
[36] Wang, H., Wang, X., Zhang, X. and Xu, W. (2024) The Promising Role of Tumor-Associated Macrophages in the Treatment of Cancer. Drug Resistance Updates, 73, Article ID: 101041.
https://doi.org/10.1016/j.drup.2023.101041
[37] Singh, S., Karthikeyan, C. and Moorthy, N.S.H.N. (2024) Fatty Acid Synthase (FASN): A Patent Review since 2016-Present. Recent Patents on Anti-Cancer Drug Discovery, 19, 37-56.
https://doi.org/10.2174/1574892818666230112170003
[38] Liu, W., Chakraborty, B., Safi, R., Kazmin, D., Chang, C. and McDonnell, D.P. (2021) Dysregulated Cholesterol Homeostasis Results in Resistance to Ferroptosis Increasing Tumorigenicity and Metastasis in Cancer. Nature Communications, 12, Article No. 5103.
https://doi.org/10.1038/s41467-021-25354-4
[39] Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024) 7-Dehydrocholesterol Dictates Ferroptosis Sensitivity. Nature, 626, 411-418.
https://doi.org/10.1038/s41586-023-06983-9
[40] Hao, X., Zheng, Z., Liu, H., Zhang, Y., Kang, J., Kong, X., et al. (2022) Inhibition of APOC1 Promotes the Transformation of M2 into M1 Macrophages via the Ferroptosis Pathway and Enhances Anti-PD1 Immunotherapy in Hepatocellular Carcinoma Based on Single-Cell RNA Sequencing. Redox Biology, 56, Article ID: 102463.
https://doi.org/10.1016/j.redox.2022.102463
[41] Henry, W.S., Müller, S., Yang, J.-S., et al. (2024) Ether Lipids Influence Cancer Cell Fate by Modulating Iron Uptake.

Baidu
map