[1] |
He, P., Wan, H., Wan, J., Jiang, H., Yang, Y., Xie, K., et al. (2022) Systemic Therapies in Hepatocellular Carcinoma: Existing and Emerging Biomarkers for Treatment Response. Frontiers in Oncology, 12, Article ID: 1015527. https://doi.org/10.3389/fonc.2022.1015527 |
[2] |
Zhou, J., Li, L., Fang, L., Xie, H., Yao, W., Zhou, X., et al. (2016) Quercetin Reduces Cyclin D1 Activity and Induces G1 Phase Arrest in Hepg2 Cells. Oncology Letters, 12, 516-522. https://doi.org/10.3892/ol.2016.4639 |
[3] |
Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362. https://doi.org/10.1016/s0140-6736(22)01200-4 |
[4] |
Huang, Z., Xia, H., Cui, Y., Yam, J.W.P. and Xu, Y. (2022) Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 11, 207-218. https://doi.org/10.14218/jcth.2022.00255 |
[5] |
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2 |
[6] |
Gao, L., Xu, Z., Huang, Z., Tang, Y., Yang, D., Huang, J., et al. (2020) CPI-613 Rewires Lipid Metabolism to Enhance Pancreatic Cancer Apoptosis via the AMPK-ACC Signaling. Journal of Experimental & Clinical Cancer Research, 39, Article No. 73. https://doi.org/10.1186/s13046-020-01579-x |
[7] |
Liu, F., Ma, M., Gao, A., Ma, F., Ma, G., Liu, P., et al. (2021) PKM2‐TMEM33 Axis Regulates Lipid Homeostasis in Cancer Cells by Controlling SCAP Stability. The EMBO Journal, 40, e108065. https://doi.org/10.15252/embj.2021108065 |
[8] |
Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2020) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606. https://doi.org/10.1084/jem.20201606 |
[9] |
Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699. https://doi.org/10.1016/j.cmet.2022.09.023 |
[10] |
Alves-Bezerra, M. and Cohen, D.E. (2017) Triglyceride Metabolism in the Liver. In: Comprehensive Physiology, John Wiley & Sons, 1-22. |
[11] |
Muir, K., Hazim, A., He, Y., Peyressatre, M., Kim, D., Song, X., et al. (2013) Proteomic and Lipidomic Signatures of Lipid Metabolism in Nash-Associated Hepatocellular Carcinoma. Cancer Research, 73, 4722-4731. https://doi.org/10.1158/0008-5472.can-12-3797 |
[12] |
Ismail, I.T., Elfert, A., Helal, M., Salama, I., El-Said, H. and Fiehn, O. (2020) Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers, 13, Article No. 88. https://doi.org/10.3390/cancers13010088 |
[13] |
Huang, Y., Wang, S., Ke, A. and Guo, K. (2023) Ferroptosis and Its Interaction with Tumor Immune Microenvironment in Liver Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article ID: 188848. https://doi.org/10.1016/j.bbcan.2022.188848 |
[14] |
Zhang, D., Man, D., Lu, J., Jiang, Y., Ding, B., Su, R., et al. (2023) Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Advanced Science, 10, Article ID: 2206669. https://doi.org/10.1002/advs.202206669 |
[15] |
Cao, F., Luo, A. and Yang, C. (2021) G6PD Inhibits Ferroptosis in Hepatocellular Carcinoma by Targeting Cytochrome P450 Oxidoreductase. Cellular Signalling, 87, Article ID: 110098. https://doi.org/10.1016/j.cellsig.2021.110098 |
[16] |
Zeng, T., Li, B., Shu, X., Pang, J., Wang, H., Cai, X., et al. (2023) Pan-Cancer Analysis Reveals That G6PD Is a Prognostic Biomarker and Therapeutic Target for a Variety of Cancers. Frontiers in Oncology, 13, Article ID: 1183474. https://doi.org/10.3389/fonc.2023.1183474 |
[17] |
Yang, R., Gao, W., Wang, Z., Jian, H., Peng, L., Yu, X., et al. (2024) Polyphyllin I Induced Ferroptosis to Suppress the Progression of Hepatocellular Carcinoma through Activation of the Mitochondrial Dysfunction via Nrf2/HO-1/GPX4 Axis. Phytomedicine, 122, Article ID: 155135. https://doi.org/10.1016/j.phymed.2023.155135 |
[18] |
Shan, Y., Yang, G., Lu, Q., Hu, X., Qi, D., Zhou, Y., et al. (2022) Centrosomal Protein 290 Is a Novel Prognostic Indicator That Modulates Liver Cancer Cell Ferroptosis via the Nrf2 Pathway. Aging, 14, 2367-2382. https://doi.org/10.18632/aging.203946 |
[19] |
Zhang, T., Sun, L., Hao, Y., Suo, C., Shen, S., Wei, H., et al. (2021) ENO1 Suppresses Cancer Cell Ferroptosis by Degrading the mRNA of Iron Regulatory Protein 1. Nature Cancer, 3, 75-89. https://doi.org/10.1038/s43018-021-00299-1 |
[20] |
Zhu, H., Han, C. and Wu, T. (2015) Mir-17-92 Cluster Promotes Hepatocarcinogenesis. Carcinogenesis, 36, 1213-1222. https://doi.org/10.1093/carcin/bgv112 |
[21] |
Xiao, F., Zhang, D., Wu, Y., Jia, Q., Zhang, L., Li, Y., et al. (2019) miRNA-17-92 Protects Endothelial Cells from Erastin-Induced Ferroptosis through Targeting the A20-ACSL4 Axis. Biochemical and Biophysical Research Communications, 515, 448-454. https://doi.org/10.1016/j.bbrc.2019.05.147 |
[22] |
Jun, L., Chen, W., Han, L., Yanmin, L., Qinglei, Z. and Pengfei, Z. (2023) Protocadherin 20 Promotes Ferroptosis by Suppressing the Expression of Sirtuin 1 and Promoting the Acetylation of Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocellular Carcinoma. The International Journal of Biochemistry & Cell Biology, 156, Article ID: 106363. https://doi.org/10.1016/j.biocel.2023.106363 |
[23] |
Yang, H., Sun, W., Bi, T., Wang, Q., Wang, W., Xu, Y., et al. (2023) The PTBP1-NCOA4 Axis Promotes Ferroptosis in Liver Cancer Cells. Oncology Reports, 49, Article No. 45. https://doi.org/10.3892/or.2023.8482 |
[24] |
Zhao, Q., Lin, X. and Wang, G. (2022) Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Frontiers in Oncology, 12, Article ID: 952371. https://doi.org/10.3389/fonc.2022.952371 |
[25] |
Cheng, X., Li, J. and Guo, D. (2018) SCAP/SREBPs Are Central Players in Lipid Metabolism and Novel Metabolic Targets in Cancer Therapy. Current Topics in Medicinal Chemistry, 18, 484-493. https://doi.org/10.2174/1568026618666180523104541 |
[26] |
Yin, F., Feng, F., Wang, L., Wang, X., Li, Z. and Cao, Y. (2019) SREBP-1 Inhibitor Betulin Enhances the Antitumor Effect of Sorafenib on Hepatocellular Carcinoma via Restricting Cellular Glycolytic Activity. Cell Death & Disease, 10, Article No. 672. https://doi.org/10.1038/s41419-019-1884-7 |
[27] |
Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510. https://doi.org/10.3389/fonc.2020.01510 |
[28] |
Menendez, J.A. and Lupu, R. (2017) Fatty Acid Synthase (FASN) as a Therapeutic Target in Breast Cancer. Expert Opinion on Therapeutic Targets, 21, 1001-1016. https://doi.org/10.1080/14728222.2017.1381087 |
[29] |
Fhu, C.W. and Ali, A. (2020) Fatty Acid Synthase: An Emerging Target in Cancer. Molecules, 25, Article No. 3935. https://doi.org/10.3390/molecules25173935 |
[30] |
Li, C., Zhang, L., Qiu, Z., Deng, W. and Wang, W. (2022) Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules, 12, Article No. 706. https://doi.org/10.3390/biom12050706 |
[31] |
Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N. and Koike, K. (2018) Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 10, Article No. 447. https://doi.org/10.3390/cancers10110447 |
[32] |
Menendez, J.A. and Lupu, R. (2007) Fatty Acid Synthase and the Lipogenic Phenotype in Cancer Pathogenesis. Nature Reviews Cancer, 7, 763-777. https://doi.org/10.1038/nrc2222 |
[33] |
Wang, R., Liu, Z., Fan, Z. and Zhan, H. (2023) Lipid Metabolism Reprogramming of CD8+ T Cell and Therapeutic Implications in Cancer. Cancer Letters, 567, Article ID: 216267. https://doi.org/10.1016/j.canlet.2023.216267 |
[34] |
Li, Y., Yang, W., Zheng, Y., Dai, W., Ji, J., Wu, L., et al. (2023) Targeting Fatty Acid Synthase Modulates Sensitivity of Hepatocellular Carcinoma to Sorafenib via Ferroptosis. Journal of Experimental & Clinical Cancer Research, 42, Article No. 6. https://doi.org/10.1186/s13046-022-02567-z |
[35] |
O’Farrell, M., Duke, G., Crowley, R., Buckley, D., Martins, E.B., Bhattacharya, D., et al. (2022) FASN Inhibition Targets Multiple Drivers of NASH by Reducing Steatosis, Inflammation and Fibrosis in Preclinical Models. Scientific Reports, 12, Article No. 15661. https://doi.org/10.1038/s41598-022-19459-z |
[36] |
Wang, H., Wang, X., Zhang, X. and Xu, W. (2024) The Promising Role of Tumor-Associated Macrophages in the Treatment of Cancer. Drug Resistance Updates, 73, Article ID: 101041. https://doi.org/10.1016/j.drup.2023.101041 |
[37] |
Singh, S., Karthikeyan, C. and Moorthy, N.S.H.N. (2024) Fatty Acid Synthase (FASN): A Patent Review since 2016-Present. Recent Patents on Anti-Cancer Drug Discovery, 19, 37-56. https://doi.org/10.2174/1574892818666230112170003 |
[38] |
Liu, W., Chakraborty, B., Safi, R., Kazmin, D., Chang, C. and McDonnell, D.P. (2021) Dysregulated Cholesterol Homeostasis Results in Resistance to Ferroptosis Increasing Tumorigenicity and Metastasis in Cancer. Nature Communications, 12, Article No. 5103. https://doi.org/10.1038/s41467-021-25354-4 |
[39] |
Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024) 7-Dehydrocholesterol Dictates Ferroptosis Sensitivity. Nature, 626, 411-418. https://doi.org/10.1038/s41586-023-06983-9 |
[40] |
Hao, X., Zheng, Z., Liu, H., Zhang, Y., Kang, J., Kong, X., et al. (2022) Inhibition of APOC1 Promotes the Transformation of M2 into M1 Macrophages via the Ferroptosis Pathway and Enhances Anti-PD1 Immunotherapy in Hepatocellular Carcinoma Based on Single-Cell RNA Sequencing. Redox Biology, 56, Article ID: 102463. https://doi.org/10.1016/j.redox.2022.102463 |
[41] |
Henry, W.S., Müller, S., Yang, J.-S., et al. (2024) Ether Lipids Influence Cancer Cell Fate by Modulating Iron Uptake. |