[1] |
吴朋飞, 杨智, 李青晏, 等. 肿瘤微环境中细胞代谢相互作用的研究进展[J]. 四川大学学报(医学版), 2024, 55(2): 482-489. |
[2] |
戈文珂, 吴卫兵. 肿瘤微环境中肿瘤相关巨噬细胞极化的影响因素及其意义[J]. 中国肺癌杂志, 2023, 26(3): 228-237. |
[3] |
金梦茹, 王莉, 李燕京. 乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 634-640. |
[4] |
李丽, 张允雷, 张秀伟, 柯章敏, 刘怡婷, 李隆杰. 肿瘤微环境中微生物影响肿瘤发生发展的分子机制[J]. 激光生物学报, 2023, 32(5): 385-392. |
[5] |
Müller, E., Christopoulos, P.F., Halder, S., Lunde, A., Beraki, K., Speth, M., et al. (2017) Toll-Like Receptor Ligands and Interferon-γ Synergize for Induction of Antitumor M1 Macrophages. Frontiers in Immunology, 8, Article 1383. https://doi.org/10.3389/fimmu.2017.01383 |
[6] |
Ong, C.E.B., Lyons, A.B., Woods, G.M. and Flies, A.S. (2019) Inducible IFN-γ Expression for MHC-I Upregulation in Devil Facial Tumor Cells. Frontiers in Immunology, 9, Article 3117. https://doi.org/10.3389/fimmu.2018.03117 |
[7] |
李园, 王宁. 神经母细胞瘤免疫逃逸机制的研究进展[J]. 发育医学电子杂志, 2024, 12(1): 68-74. |
[8] |
Russell, M.S., Dudani, R., Krishnan, L. and Sad, S. (2009) IFN-γ Expressed by T Cells Regulates the Persistence of Antigen Presentation by Limiting the Survival of Dendritic Cells. The Journal of Immunology, 183, 7710-7718. https://doi.org/10.4049/jimmunol.0901274 |
[9] |
Hertweck, A., Vila de Mucha, M., Barber, P.R., Dagil, R., Porter, H., Ramos, A., et al. (2022) The TH1 Cell Lineage-Determining Transcription Factor T-Bet Suppresses TH2 Gene Expression by Redistributing GATA3 Away from TH2 Genes. Nucleic Acids Research, 50, 4557-4573. https://doi.org/10.1093/nar/gkac258 |
[10] |
金丽娅, 凤志慧. 放疗诱导远端效应的免疫相关机制研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(12): 930-936. |
[11] |
Djuretic, I.M., Levanon, D., Negreanu, V., Groner, Y., Rao, A. and Ansel, K.M. (2006) Transcription Factors T-Bet and RUNX3 Cooperate to Activate Ifng and Silence IL4 in T Helper Type 1 Cells. Nature Immunology, 8, 145-153. https://doi.org/10.1038/ni1424 |
[12] |
Tanaka, K., Ichiyama, K., Hashimoto, M., Yoshida, H., Takimoto, T., Takaesu, G., et al. (2008) Loss of Suppressor of Cytokine Signaling 1 in Helper T Cells Leads to Defective Th17 Differentiation by Enhancing Antagonistic Effects of IFN-γ on STAT3 and Smads. The Journal of Immunology, 180, 3746-3756. https://doi.org/10.4049/jimmunol.180.6.3746 |
[13] |
Bréart, B., Williams, K., Krimm, S., Wong, T., Kayser, B.D., Wang, L., et al. (2025) IL-27 Elicits a Cytotoxic CD8+ T Cell Program to Enforce Tumour Control. Nature. https://doi.org/10.1038/s41586-024-08510-w |
[14] |
Olalekan, S.A., Cao, Y., Hamel, K.M. and Finnegan, A. (2015) B Cells Expressing IFN‐γ Suppress Treg‐Cell Differentiation and Promote Autoimmune Experimental Arthritis. European Journal of Immunology, 45, 988-998. https://doi.org/10.1002/eji.201445036 |
[15] |
Kundu, M., Roy, A. and Pahan, K. (2017) Selective Neutralization of IL-12 P40 Monomer Induces Death in Prostate Cancer Cells via IL-12-IFN-γ. Proceedings of the National Academy of Sciences, 114, 11482-11487. https://doi.org/10.1073/pnas.1705536114 |
[16] |
Guinn, Z., Brown, D.M. and Petro, T.M. (2017) Activation of IRF3 Contributes to IFN-γ and ISG54 Expression during the Immune Responses to B16F10 Tumor Growth. International Immunopharmacology, 50, 121-129. https://doi.org/10.1016/j.intimp.2017.06.016 |
[17] |
Zaidi, M.R. (2019) The Interferon-Gamma Paradox in Cancer. Journal of Interferon & Cytokine Research, 39, 30-38. https://doi.org/10.1089/jir.2018.0087 |
[18] |
Wang, W., Green, M., Choi, J.E., Gijón, M., Kennedy, P.D., Johnson, J.K., et al. (2019) CD8+ T Cells Regulate Tumour Ferroptosis during Cancer Immunotherapy. Nature, 569, 270-274. https://doi.org/10.1038/s41586-019-1170-y |
[19] |
Higgs, B.W., Morehouse, C.A., Streicher, K., Brohawn, P.Z., Pilataxi, F., Gupta, A., et al. (2018) Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab. Clinical Cancer Research, 24, 3857-3866. https://doi.org/10.1158/1078-0432.ccr-17-3451 |
[20] |
Karachaliou, N., Gonzalez-Cao, M., Crespo, G., Drozdowskyj, A., Aldeguer, E., Gimenez-Capitan, A., et al. (2018) Interferon Gamma, an Important Marker of Response to Immune Checkpoint Blockade in Non-Small Cell Lung Cancer and Melanoma Patients. Therapeutic Advances in Medical Oncology, 10. https://doi.org/10.1177/1758834017749748 |
[21] |
Zhang, M., Huang, L., Ding, G., Huang, H., Cao, G., Sun, X., et al. (2020) Interferon Gamma Inhibits CXCL8-CXCR2 Axis Mediated Tumor-Associated Macrophages Tumor Trafficking and Enhances Anti-PD1 Efficacy in Pancreatic Cancer. Journal for ImmunoTherapy of Cancer, 8, e000308. https://doi.org/10.1136/jitc-2019-000308 |
[22] |
Sceneay, J., Goreczny, G.J., Wilson, K., Morrow, S., DeCristo, M.J., Ubellacker, J.M., et al. (2019) Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer. Cancer Discovery, 9, 1208-1227. https://doi.org/10.1158/2159-8290.cd-18-1454 |
[23] |
Song, M., Ping, Y., Zhang, K., Yang, L., Li, F., Zhang, C., et al. (2019) Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Research, 79, 3737-3748. https://doi.org/10.1158/0008-5472.can-19-0596 |
[24] |
Lo, U.-G., Bao, J., Cen, J., Yeh, H.-C., Luo, J., Tan, W., et al. (2019) Interferon-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition Leading to Renal Cancer Invasion. American Journal of Clinical and Experimental Urology, 7, 31-45. |
[25] |
Singh, A.P., Moniaux, N., Chauhan, S.C., Meza, J.L. and Batra, S.K. (2004) Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis. Cancer Research, 64, 622-630. https://doi.org/10.1158/0008-5472.can-03-2636 |
[26] |
Andrianifahanana, M., Singh, A.P., Nemos, C., Ponnusamy, M.P., Moniaux, N., Mehta, P.P., et al. (2007) IFN-γ-Induced Expression of MUC4 in Pancreatic Cancer Cells Is Mediated by STAT-1 Upregulation: A Novel Mechanism for IFN-γ Response. Oncogene, 26, 7251-7261. https://doi.org/10.1038/sj.onc.1210532 |
[27] |
Singh, S., Kumar, S., Srivastava, R.K., Nandi, A., Thacker, G., Murali, H., et al. (2020) Loss of ELF5-FBXW7 Stabilizes IFNGR1 to Promote the Growth and Metastasis of Triple-Negative Breast Cancer through Interferon-γ Signalling. Nature Cell Biology, 22, 591-602. https://doi.org/10.1038/s41556-020-0495-y |
[28] |
Pai, C.S., Huang, J.T., Lu, X., Simons, D.M., Park, C., Chang, A., et al. (2019) Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade. Immunity, 50, 477-492.E8. https://doi.org/10.1016/j.immuni.2019.01.006 |
[29] |
He, Y., Wang, X., Zhang, G., Chen, H., Zhang, H. and Feng, Z. (2005) Sustained Low-Level Expression of Interferon-γ Promotes Tumor Development: Potential Insights in Tumor Prevention and Tumor Immunotherapy. Cancer Immunology, Immunotherapy, 54, 891-897. https://doi.org/10.1007/s00262-004-0654-1 |
[30] |
Benci, J.L., Xu, B., Qiu, Y., Wu, T.J., Dada, H., Twyman-Saint Victor, C., et al. (2016) Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 167, 1540-1554.E12. https://doi.org/10.1016/j.cell.2016.11.022 |
[31] |
Li, X., Shao, C., Shi, Y. and Han, W. (2018) Lessons Learned from the Blockade of Immune Checkpoints in Cancer Immunotherapy. Journal of Hematology & Oncology, 11, Article No. 31. https://doi.org/10.1186/s13045-018-0578-4 |
[32] |
Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., Knutson, K.L., Chumsri, S. and Lou, Y. (2018) Next Generation of Immune Checkpoint Therapy in Cancer: New Developments and Challenges. Journal of Hematology & Oncology, 11, Article No. 39. https://doi.org/10.1186/s13045-018-0582-8 |
[33] |
Liu, D. (2019) Cancer Biomarkers for Targeted Therapy. Biomarker Research, 7, Article No. 25. https://doi.org/10.1186/s40364-019-0178-7 |
[34] |
Chen, G., Huang, A.C., Zhang, W., Zhang, G., Wu, M., Xu, W., et al. (2018) Exosomal PD-L1 Contributes to Immunosuppression and Is Associated with Anti-PD-1 Response. Nature, 560, 382-386. https://doi.org/10.1038/s41586-018-0392-8 |