[1] |
Koutsoukas, A., Simms, B., Kirchmair, J., Bond, P.J., Whitmore, A.V., Zimmer, S., et al. (2011) From in Silico Target Prediction to Multi-Target Drug Design: Current Databases, Methods and Applications. Journal of Proteomics, 74, 2554-2574. https://doi.org/10.1016/j.jprot.2011.05.011 |
[2] |
Mayr, A., Klambauer, G., Unterthiner, T. and Hochreiter, S. (2018) Large-Scale Comparison of Machine Learning Methods for Drug Target Prediction on CheMBL. Bioinformatics, 34, 1127-1136. |
[3] |
Wang, Y., Liu, D. and Hu, X. (2019) Predicting hERG Channel Inhibition Using a Combination of Molecular Fingerprints and Machine Learning. Journal of Chemical Information and Modeling, 59, 381-390. |
[4] |
Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. and Blaschke, T. (2018) The Rise of Deep Learning in Drug Discovery. Drug Discovery Today, 23, 1241-1250. https://doi.org/10.1016/j.drudis.2018.01.039 |
[5] |
Goh, G.B., Hodas, N.O. and Vishnu, A. (2017) Deep Learning for Computational Chemistry. Journal of Computational Chemistry, 38, 1291-1307. https://doi.org/10.1002/jcc.24764 |
[6] |
Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D. and Pande, V. (2016) Massively Multitask Networks for Drug Discovery. arXiv: 1502.02072. |
[7] |
Wallach, I., Dzamba, M. and Heifets, A. (2015) AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-Based Drug Discovery. arXiv: 1510.02855. |
[8] |
Dahl, G.E., Jaitly, N. and Salakhutdinov, R. (2014) Multi-Task Neural Networks for QSAR Predictions. arXiv: 1406.1231. |
[9] |
Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E. and Svetnik, V. (2015) Deep Neural Nets as a Method for Quantitative Structure–activity Relationships. Journal of Chemical Information and Modeling, 55, 263-274. https://doi.org/10.1021/ci500747n |
[10] |
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Ceulemans, H., Wegner, J.K. and Hochreiter, S. (2014) Deep Learning as an Opportunity in Virtual Screening. Deep Learning and Representation Learning Workshop, NIPS 2014, http://www.bioinf.jku.at/publications/2014/NIPS2014a.pdf |
[11] |
Altae-Tran, H., Ramsundar, B., Pappu, A.S. and Pande, V. (2017) Low Data Drug Discovery with One-Shot Learning. ACS Central Science, 3, 283-293. https://doi.org/10.1021/acscentsci.6b00367 |
[12] |
Duvenaud, D.K., Maclaurin, D., Aguilera-Iparraguirre, J., Gomez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A. and Adams, R.P. (2015) Convolutional Networks on Graphs for Learning Molecular Fingerprints. Proceedings of the 29th International Conference on Neural Information Processing Systems, Montreal, 7-12 December 2015, 2224-2232. |
[13] |
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O. and Dahl, G.E. (2017) Neural Message Passing for Quantum Chemistry. Proceedings of the 34th International Conference on Machine Learning, Sydney, 6-11 August 2017, 1263-1272. |
[14] |
Kearnes, S., McCloskey, K., Berndl, M., Pande, V. and Riley, P. (2016) Molecular Graph Convolutions: Moving beyond Fingerprints. Journal of Computer-Aided Molecular Design, 30, 595-608. https://doi.org/10.1007/s10822-016-9938-8 |
[15] |
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. (2018) A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 29, 434-445. |
[16] |
Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., et al. (2019) Analyzing Learned Molecular Representations for Property Prediction. Journal of Chemical Information and Modeling, 59, 3370-3388. https://doi.org/10.1021/acs.jcim.9b00237 |
[17] |
Zhang, L., Han, X., Wang, Z., Zhao, Y., Liu, S. and Li, J. (2018) End-to-End Attention-Based Recurrent Neural Network for Predicting Drug-Target Interactions from Heterogeneous Information. Scientific Reports, 8, 1-14. |
[18] |
Zhu, H. and Kong, X. (2019) Graph Neural Networks for Drug Discovery. In: Liu, W.B., Hao, H.Q., Wang, H., Zou, Z.Y. and Xing, W.W., Eds., Graph Neural Networks: Methods and Applications, Springer, 175-196. |
[19] |
Zhou, Z., Li, X. and Zare, R.N. (2018) Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Central Science, 4, 1129-1136. |
[20] |
Zhavoronkov, A., Ivanenkov, Y.A., Aliper, A., Veselov, M.S., Aladinskiy, V.A., Aladinskaya, A.V., et al. (2019) Deep Learning Enables Rapid Identification of Potent DDR1 Kinase Inhibitors. Nature Biotechnology, 37, 1038-1040. https://doi.org/10.1038/s41587-019-0224-x |
[21] |
Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/bf00994018 |
[22] |
Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/a:1010933404324 |
[23] |
Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer. |
[24] |
Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. MIT Press. |
[25] |
Kuhn, M. and Johnson, K. (2013) Applied Predictive Modeling. Springer. |
[26] |
Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. |
[27] |
James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to Statistical Learning. Springer. |
[28] |
Murphy, K.P. (2012) Machine Learning: A Probabilistic Perspective. MIT Press. |
[29] |
Schmidhuber, J. (2015) Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 |
[30] |
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539 |
[31] |
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016) Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529, 484-489. https://doi.org/10.1038/nature16961 |
[32] |
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., et al. (2015) Human-Level Control through Deep Reinforcement Learning. Nature, 518, 529-533. https://doi.org/10.1038/nature14236 |