[1] |
Bridgewater, J., Galle, P.R., Khan, S.A., Llovet, J.M., Park, J., Patel, T., et al. (2014) Guidelines for the Diagnosis and Management of Intrahepatic Cholangiocarcinoma. Journal of Hepatology, 60, 1268-1289. https://doi.org/10.1016/j.jhep.2014.01.021 |
[2] |
von Hahn, T., Ciesek, S., Wegener, G., Plentz, R.R., Weismüller, T.J., Wedemeyer, H., et al. (2011) Epidemiological Trends in Incidence and Mortality of Hepatobiliary Cancers in Germany. Scandinavian Journal of Gastroenterology, 46, 1092-1098. https://doi.org/10.3109/00365521.2011.589472 |
[3] |
Khan, S.A., Davidson, B.R., Goldin, R.D., Heaton, N., Karani, J., Pereira, S.P., et al. (2012) Guidelines for the Diagnosis and Treatment of Cholangiocarcinoma: An Update. Gut, 61, 1657-1669. https://doi.org/10.1136/gutjnl-2011-301748 |
[4] |
Mavros, M.N., Economopoulos, K.P., Alexiou, V.G. and Pawlik, T.M. (2014) Treatment and Prognosis for Patients with Intrahepatic Cholangiocarcinoma. JAMA Surgery, 149, 565-574. https://doi.org/10.1001/jamasurg.2013.5137 |
[5] |
Fan, B., Malato, Y., Calvisi, D.F., Naqvi, S., Razumilava, N., Ribback, S., et al. (2012) Cholangiocarcinomas Can Originate from Hepatocytes in Mice. Journal of Clinical Investigation, 122, 2911-2915. https://doi.org/10.1172/jci63212 |
[6] |
Holczbauer, Á., Factor, V.M., Andersen, J.B., Marquardt, J.U., Kleiner, D.E., Raggi, C., et al. (2013) Modeling Pathogenesis of Primary Liver Cancer in Lineage-Specific Mouse Cell Types. Gastroenterology, 145, 221-231. https://doi.org/10.1053/j.gastro.2013.03.013 |
[7] |
Sekiya, S. and Suzuki, A. (2012) Intrahepatic Cholangiocarcinoma Can Arise from Notch-Mediated Conversion of Hepatocytes. Journal of Clinical Investigation, 122, 3914-3918. https://doi.org/10.1172/jci63065 |
[8] |
Guest, R.V., Boulter, L., Kendall, T.J., Minnis-Lyons, S.E., Walker, R., Wigmore, S.J., et al. (2014) Cell Lineage Tracing Reveals a Biliary Origin of Intrahepatic Cholangiocarcinoma. Cancer Research, 74, 1005-1010. https://doi.org/10.1158/0008-5472.can-13-1911 |
[9] |
Zender, S., Nickeleit, I., Wuestefeld, T., Sörensen, I., Dauch, D., Bozko, P., et al. (2013) A Critical Role for Notch Signaling in the Formation of Cholangiocellular Carcinomas. Cancer Cell, 23, 784-795. https://doi.org/10.1016/j.ccr.2013.04.019 |
[10] |
Dill, M.T., Tornillo, L., Fritzius, T., Terracciano, L., Semela, D., Bettler, B., et al. (2013) Constitutive Notch2 Signaling Induces Hepatic Tumors in Mice. Hepatology, 57, 1607-1619. https://doi.org/10.1002/hep.26165 |
[11] |
Chen, X. and Calvisi, D.F. (2014) Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research. The American Journal of Pathology, 184, 912-923. https://doi.org/10.1016/j.ajpath.2013.12.002 |
[12] |
O’Dell, M.R., Li Huang, J., Whitney-Miller, C.L., Deshpande, V., Rothberg, P., Grose, V., et al. (2012) KrasG12D and p53 Mutation Cause Primary Intrahepatic Cholangiocarcinoma. Cancer Research, 72, 1557-1567. https://doi.org/10.1158/0008-5472.can-11-3596 |
[13] |
Saborowski, A., Saborowski, M., Davare, M.A., Druker, B.J., Klimstra, D.S. and Lowe, S.W. (2013) Mouse Model of Intrahepatic Cholangiocarcinoma Validates FIG-ROS as a Potent Fusion Oncogene and Therapeutic Target. Proceedings of the National Academy of Sciences, 110, 19513-19518. https://doi.org/10.1073/pnas.1311707110 |
[14] |
Xu, X. (2006) Induction of Intrahepatic Cholangiocellular Carcinoma by Liver-Specific Disruption of Smad4 and Pten in Mice. Journal of Clinical Investigation, 116, 1843-1852. https://doi.org/10.1172/jci27282 |
[15] |
Chen, J., Li, Z., Chen, J., Du, Y., Song, W., Xuan, Z., et al. (2019) Downregulation of MGMT Promotes Proliferation of Intrahepatic Cholangiocarcinoma by Regulating P21. Clinical and Translational Oncology, 22, 392-400. https://doi.org/10.1007/s12094-019-02140-9 |
[16] |
Sakata, K., Yoshizumi, T., Izumi, T., Shimokawa, M., Itoh, S., Ikegami, T., et al. (2019) The Role of DNA Repair Glycosylase OGG1 in Intrahepatic Cholangiocarcinoma. Anticancer Research, 39, 3241-3248. https://doi.org/10.21873/anticanres.13465 |
[17] |
Andersen, J.B. and Thorgeirsson, S.S. (2013) Genomic Decoding of Intrahepatic Cholangiocarcinoma Reveals Therapeutic Opportunities. Gastroenterology, 144, 687-690. https://doi.org/10.1053/j.gastro.2013.02.018 |
[18] |
Andersen, J.B. and Thorgeirsson, S.S. (2012) Genetic Profiling of Intrahepatic Cholangiocarcinoma. Current Opinion in Gastroenterology, 28, 266-272. https://doi.org/10.1097/mog.0b013e3283523c7e |
[19] |
Andersen, J.B. and Thorgeirsson, S.S. (2013) A Perspective on Molecular Therapy in Cholangiocarcinoma: Present Status and Future Directions. Hepatic Oncology, 1, 143-157. https://doi.org/10.2217/hep.13.4 |
[20] |
Sia, D., Tovar, V., Moeini, A. and Llovet, J.M. (2013) Intrahepatic Cholangiocarcinoma: Pathogenesis and Rationale for Molecular Therapies. Oncogene, 32, 4861-4870. https://doi.org/10.1038/onc.2012.617 |
[21] |
Andersen, J.B., Spee, B., Blechacz, B.R., Avital, I., Komuta, M., Barbour, A., et al. (2012) Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors. Gastroenterology, 142, 1021-1031.e15. https://doi.org/10.1053/j.gastro.2011.12.005 |
[22] |
McKay, S.C., Unger, K., Pericleous, S., Stamp, G., Thomas, G., Hutchins, R.R., et al. (2011) Array Comparative Genomic Hybridization Identifies Novel Potential Therapeutic Targets in Cholangiocarcinoma. HPB, 13, 309-319. https://doi.org/10.1111/j.1477-2574.2010.00286.x |
[23] |
Sia, D., Hoshida, Y., Villanueva, A., Roayaie, S., Ferrer, J., Tabak, B., et al. (2013) Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes. Gastroenterology, 144, 829-840. https://doi.org/10.1053/j.gastro.2013.01.001 |
[24] |
Xu, R.F., Sun, J.P., Zhang, S.R., Zhu, G.S., Li, L.B., Liao, Y.L., et al. (2011) KRAS and PIK3CA but Not BRAF Genes Are Frequently Mutated in Chinese Cholangiocarcinoma Patients. Biomedicine & Pharmacotherapy, 65, 22-26. https://doi.org/10.1016/j.biopha.2010.06.009 |
[25] |
Khan, S.A., Thomas, H.C., Toledano, M.B., Cox, I.J. and Taylor-Robinson, S.D. (2005) P53 Mutations in Human Cholangiocarcinoma: A Review. Liver International, 25, 704-716. https://doi.org/10.1111/j.1478-3231.2005.01106.x |
[26] |
Ong, C.K., Subimerb, C., Pairojkul, C., Wongkham, S., Cutcutache, I., Yu, W., et al. (2012) Exome Sequencing of Liver Fluke-Associated Cholangiocarcinoma. Nature Genetics, 44, 690-693. https://doi.org/10.1038/ng.2273 |
[27] |
Wang, P., Dong, Q., Zhang, C., Kuan, P., Liu, Y., Jeck, W.R., et al. (2012) Mutations in Isocitrate Dehydrogenase 1 and 2 Occur Frequently in Intrahepatic Cholangiocarcinomas and Share Hypermethylation Targets with Glioblastomas. Oncogene, 32, 3091-3100. https://doi.org/10.1038/onc.2012.315 |
[28] |
Borger, D.R., Tanabe, K.K., Fan, K.C., Lopez, H.U., Fantin, V.R., Straley, K.S., et al. (2011) Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified through Broad-Based Tumor Genotyping. The Oncologist, 17, 72-79. https://doi.org/10.1634/theoncologist.2011-0386 |
[29] |
Kipp, B.R., Voss, J.S., Kerr, S.E., Barr Fritcher, E.G., Graham, R.P., Zhang, L., et al. (2012) Isocitrate Dehydrogenase 1 and 2 Mutations in Cholangiocarcinoma. Human Pathology, 43, 1552-1558. https://doi.org/10.1016/j.humpath.2011.12.007 |
[30] |
Chan-on, W., Nairismägi, M., Ong, C.K., Lim, W.K., Dima, S., Pairojkul, C., et al. (2013) Exome Sequencing Identifies Distinct Mutational Patterns in Liver Fluke-Related and Non-Infection-Related Bile Duct Cancers. Nature Genetics, 45, 1474-1478. https://doi.org/10.1038/ng.2806 |
[31] |
Jiao, Y., Pawlik, T.M., Anders, R.A., Selaru, F.M., Streppel, M.M., Lucas, D.J., et al. (2013) Exome Sequencing Identifies Frequent Inactivating Mutations in BAP1, ARID1A and PBRM1 in Intrahepatic Cholangiocarcinomas. Nature Genetics, 45, 1470-1473. https://doi.org/10.1038/ng.2813 |
[32] |
Arai, Y., Totoki, Y., Hosoda, F., Shirota, T., Hama, N., Nakamura, H., et al. (2014) Fibroblast Growth Factor Receptor 2 Tyrosine Kinase Fusions Define a Unique Molecular Subtype of Cholangiocarcinoma. Hepatology, 59, 1427-1434. https://doi.org/10.1002/hep.26890 |
[33] |
Gao, Q., Zhao, Y., Wang, X., Guo, W., Gao, S., Wei, L., et al. (2014) Activating Mutations in PTPN3 Promote Cholangiocarcinoma Cell Proliferation and Migration and Are Associated with Tumor Recurrence in Patients. Gastroenterology, 146, 1397-1407. https://doi.org/10.1053/j.gastro.2014.01.062 |
[34] |
Oishi, N., Kumar, M.R., Roessler, S., Ji, J., Forgues, M., Budhu, A., et al. (2012) Transcriptomic Profiling Reveals Hepatic Stem-Like Gene Signatures and Interplay of miR-200c and Epithelial-Mesenchymal Transition in Intrahepatic Cholangiocarcinoma. Hepatology, 56, 1792-1803. https://doi.org/10.1002/hep.25890 |
[35] |
Ahn, K.S., O’Brien, D., Kang, Y.N., Mounajjed, T., Kim, Y.H., Kim, T., et al. (2019) Prognostic Subclass of Intrahepatic Cholangiocarcinoma by Integrative Molecular-Clinical Analysis and Potential Targeted Approach. Hepatology International, 13, 490-500. https://doi.org/10.1007/s12072-019-09954-3 |