下肢动脉硬化性闭塞症患者sVCAM-1水平变化及临床诊断价值研究
Study on the Changes of sVCAM-1 Level and Clinical Diagnostic Value in Patients with Lower Extremity Arteriosclerosis Obliterans
DOI: 10.12677/acm.2025.152540, PDF, HTML, XML,   
作者: 赵福乐, 赵 睿:青岛大学,山东 青岛;青岛市市立医院血管外科,山东 青岛;苏晓雪:潍坊市益都中心医院血管外科,山东 潍坊;杜刘念博:青岛西海岸新区中心医院血管外科,山东 青岛;欧明辉*:青岛市市立医院血管外科,山东 青岛
关键词: sVCAM-1血管细胞黏附分子下肢动脉硬化性闭塞症动脉粥样硬化sVCAM-1 Vascular Cell Adhesion Molecules Lower Extremity Arteriosclerosis Obliterans Arteriosclerosis
摘要: 目的:通过检测LEASO患者血清中sVCAM-1的表达水平探讨sVACM-1在LEASO中的临床诊断价值。方法:纳入82例自2023年12月至2024年7月在青岛市市立医院就诊并确诊为LEASO的患者(将其定义为下肢动脉硬化闭塞症组(LEASO组),并根据病变部位及Fontaine分期将其分组。随机纳入同期40名来我院体检的健康者,定义为健康对照组。用酶联免疫吸附法(ELISA)检测各组患者血清sVCAM-1的表达量,计算各组间sVCAM-1表达水平差异;将sVCAM-1与实验室检查结果进行LEASO的影响因素logistic回归分析;并用sVCAM-1联合实验室检查指标对LEASO进行诊断预测。结果:LEASO患者组sVCAM-1表达量高于健康对照组(P < 0.05)。在LEASO组中,单侧下肢组和双侧下肢组sVCAM-1的表达无显著性差异(P > 0.05)。而在根据病变涉及的下肢血管部位的分组中,膝上动脉病变组sVCAM-1的表达量最高,且膝上膝下动脉病变合并组sVCAM-1的表达量高于膝下动脉病变组(P < 0.05)。在LEASO组中,随着Fontaine分期的升高,sVCAM-1的表达量也在逐步升高,但Fontaine IV期sVCAM-1的表达量较III期有所下降。影响因素logistic回归分析结果显示TC (OR = 2.222, 95%CI: 1.323~3.730)、LDL-C (OR = 1.802, 95%CI: 1.232~2.637)、sVCAM-1 (OR = 1.003, 95%CI: 1.001~1.005)是发生LEASO的独立危险因素。最后,利用受试者工作曲线将sVCAM-1联合有意义的实验室指标对LEASO进行诊断预测,ROC曲线灵敏度较强。结论:sVCAM-1可能参与LEASO的发生和发展,通过检测血清sVCAM-1的表达量,或许可以为LEASO的诊断和治疗提供新的思路和方法。
Abstract: Objective: To explore the clinical diagnostic value of sVACM-1 in LEASO by detecting the expression level of sVCAM-1 in serum of LEASO patients. Methods: Eighty-two patients who visited Qingdao Municipal Hospital from December 2023 to July 2024 and were diagnosed with LEASO (defined as the lower extremity atherosclerotic occlusive disease group (LEASO group)) were included and grouped according to the lesion site and Fontaine staging. Forty healthy individuals who came to our hospital for physical examination during the same period were randomly included and defined as the healthy control group. The expression of serum sVCAM-1 was detected by enzyme-linked immunosorbent assay (ELISA) in each group of patients, and the difference of sVCAM-1 expression level between the groups was calculated; logistic regression analysis of the influencing factors of LEASO was carried out by combining sVCAM-1 with the laboratory examination results; and diagnostic prediction of LEASO was carried out by using sVCAM-1 in combination with laboratory examination indexes. Results: The expression of sVCAM-1 in the LEASO patient group was higher than that in the healthy control group (P < 0.05). In the LEASO group, there was no significant difference in sVCAM-1 expression between the unilateral lower limb group and the bilateral lower limb group (P > 0.05). In contrast, in the grouping according to the vascular site of the lower limb involved in the lesion, the expression of sVCAM-1 was highest in the supra-knee artery lesion group, and the expression of sVCAM-1 in the combined supra-knee infra-knee artery lesion group was higher than that of the infra-knee artery lesion group (P < 0.05). sVCAM-1 expression was also progressively higher with the elevation of Fontaine’s stage in the LEASO group, but the expression of Fontaine stage IV sVCAM-1 expression decreased compared with stage III. The results of logistic regression analysis of the influencing factors showed that TC (OR = 2.222, 95%CI: 1.323~3.730), LDL-C (OR = 1.802, 95%CI: 1.232~2.637), and sVCAM-1 (OR = 1.003, 95%CI: 1.001~1.005) were the independent risk factors. Finally, sVCAM-1 was combined with meaningful laboratory indicators for the diagnostic prediction of LEASO using the subject’s working curve, and the ROC curve was sensitive. Conclusion: sVCAM-1 may be involved in the occurrence and development of LEASO, and by detecting the expression of serum sVCAM-1, it may provide new ideas and methods for the diagnosis and treatment of LEASO.
文章引用:赵福乐, 赵睿, 苏晓雪, 杜刘念博, 欧明辉. 下肢动脉硬化性闭塞症患者sVCAM-1水平变化及临床诊断价值研究[J]. 临床医学进展, 2025, 15(2): 1808-1820. https://doi.org/10.12677/acm.2025.152540

1. 引言

下肢动脉硬化性闭塞症(Lower Extremity Arteriosclerosis Obliterans, LEASO)是动脉粥样硬化病变发生在下肢大、中动脉导致血管内膜增厚、血管管腔狭窄或闭塞从而造成远端肢体慢性缺血的一种慢性进展性疾病[1]。据估计,全球约有2亿人深受LEASO的影响。截止到2020年我国约有4000余万LEASO患者,相较于2000年,患病总人数总体增长40% [2],已成为我国发病率较高的动脉疾病之一[3]。LEASO起病隐匿,大多数患者早期往往没有典型的临床症状。当前临床实验室检查没有LEASO的特异性敏感标志物,且踝肱指数(Ankle brachial index, ABI)作为LEASO的筛查和诊断手段之一[4] [5],因其易受到多种因素干扰导致敏感度较差的特性,现已不被指南推荐用来指导临床诊断工作[6] [7]。因此,进行LEASO发病机制的研究,寻找新的特异性标志物对于指导LEASO患者就诊及临床治疗具有十分重要的作用。

血管细胞黏附分子-1 (Vascular cellular adhesion molecule-1, VCAM-1)是一种跨膜Ⅰ型蛋白,在多个物种中表达[8]。VCAM-1受到肿瘤坏死因子α转换酶(Tumor necrosis factor-α converting enzyme, TACE)的诱导,可表达为可溶性的血管细胞黏附分子-1 (Soluble vascular cell adhesion molecules-1, sVCAM-1) [9]。近年来已有研究表明,VCAM-1参与炎症过程中白细胞、单核细胞与血管内皮的黏附与转移,血管内皮损伤,血管平滑肌细胞的迁移与增殖等过程的调控[10] [11]。可见VCAM-1与AS的发病机制存在一定的相关性。目前,VCAM-1与慢性肾病、冠心病、急性心梗等心脑大血管疾病的研究较多,而是否参与AS病变演变过程以及其在LEASO患者血清的表达水平还需进一步研究。

在本研究中,我们通过检测LEASO患者血清sVCAM-1的表达水平,探讨sVCAM-1是否参与LEASO的发生与发展。并通过多因素logistic回归分析对LEASO的影响因素进行讨论,最后联合有意义的实验室检测指标分析其诊断及预测价值。尝试确定LEASO患者新型血清学标志物,为LEASO的早期诊断及治疗提供新的方向。

2. 资料与方法

2.1. 临床资料

实验组:严格选取2023年12月至2024年7月在青岛市市立医院就诊并确诊的82例经纳入排除标准筛选后的LEASO患者(经下肢动脉多普勒超声、计算机断层扫描血管成像(CTA)或下肢动脉造影(DSA)检查确诊LEASO),将其定义为下肢动脉硬化性闭塞症组(LEASO组)。此外,根据Fontaine分期(表1)将LEASO组患者分为FontaineI期(11例,13.41%)、FontaineII期(40例,48.78%)、FontaineIII期(15例,18.29%)、FontaineIV期(16例,19.51%);根据病变的患肢部位分为单侧组(36例)和双侧组(46例);根据病变涉及的下肢血管部位分为膝上组(18例)、膝下组(20例)和膝上膝下合并组(44例)。

实验组纳入标准:1) 就诊于青岛市市立医院本部血管外科,经下肢动脉多普勒超声、计算机断层扫描血管成像(CTA)或下肢动脉造影(DSA)检查确诊下肢动脉硬化性闭塞症的患者;2) 有LEASO临床表现;3) 病历及相关辅助检查信息完善;4) 自愿参加本研究并签署知情同意书。

实验组排除标准:1) 不同意参加本次实验;2) 临床资料及辅助检查结果不完整;3) 有急(慢)性感染性疾病、血液系统疾病等其他疾病可能会造成异常检验结果的患者;4) 既往有恶性肿瘤病史长期应用激素、免疫制剂、行放(化)疗治疗的患者;5) 既往有下肢动脉以外的其他动脉疾病史。

Fontaine分期参照表1

Table 1. Fontaine grading reference table

1. Fontaine分级参照表

Fontaine分级

临床描述

客观标准

I

病肢无明显临床症状,或仅有麻木、发凉自觉症状。

病肢皮温较低,色泽苍白,足背和(或)颈后动脉搏动减弱;踝/肱指数 < 0.9。

以间歇性跛行为主要症状。

病肢皮温降低、苍白更明显,可伴有皮肤干燥、脱屑、指(趾)甲变形、小腿肌萎缩。足背和(或)胫后动脉搏动消失。

III

以静息痛为主要症状。疼痛剧烈且持续,夜间更甚,迫使病人辗转或屈膝护足而坐,或借助肢体下垂以求减轻疼痛。

趾(指)腹色泽暗红,可伴有肢体远侧水肿。

IV

除静息痛外,出现趾(指)端发黑、干瘪、坏疽或缺血性溃疡。如继发感染,干性坏疽转为湿性坏疽,出现发热、烦躁等全身毒血症状。

踝/肱指数 < 0.4。

对照组:严格选取40名同一时期到青岛市市立医院体检经纳入排除标准筛选后的健康人群,对本次实验知情同意,定义为健康对照组。其中男20例,女20例,平均年龄(73.53 ± 6.16)岁。

对照组纳入标准:1) 在体检人员中招募,知情同意参加本研究并签署知情同意书;2) 既往体健;3) 相关辅助检查结果信息完善。

对照组排除标准:1) 不同意参加本次实验;2) 患有血液系统疾病、恶性肿瘤、其他动脉疾病等基础疾病可能会影响sVCAM-1在血清中的表达;3) 相关辅助检查结果信息不完整。

2.2. 方法

在所有患者入院时收集患者的临床资料及实验室检查结果(包括血常规、肝功、肾功、血脂、凝血)。收集所有入组患者入院(或体检)当日(或次日)空腹外周静脉血,在采血管中提前备EDTA抗凝。然后进行离心处理(3000 rpm/min, 10 min),分离上清液置于2 ml EP管中保存并标记,置于−80℃冰箱保存。将试剂盒提前存放于冰箱,待收集足够的样品后取出样品并将试剂盒从冰箱取出,放置20 min将其平衡至室温。将洗涤缓冲液用蒸馏水稀释(1:20)备用。将标准品进行倍比稀释。设置空白孔、标准品孔及样本孔。空白孔中加入样品稀释液100 μL,标准品孔中各加入倍比稀释后的标准品100 μL;样本孔先加待测样本20 μL,再加样本稀释液80 μL后盖上封板膜37℃温育1 h。弃液甩干后,每孔加入生物素抗体工作液100 μL,盖上封板膜37℃温育1 h后洗涤3次。每孔内加入酶结合物工作液100 μL,盖封板膜37℃温育30 min后洗涤5次。每孔内加入底物溶液90 μL,盖膜37℃避光温育15 min。每孔加入50 μL终止液,用酶标仪在450 nm波长上测量各孔光密度(OD值)。

2.3. 统计学方法

采用SPSS (Statistical Product and Service Solution) 27.0统计软件进行数据分析。计数资料用均数±标准差表示,二分类变量用卡方检验。用非参数检验分别对健康对照组和LEASO组以及LEASO组中单、双侧组、膝上、膝下、膝上膝下合并组的sVCAM-1表达量进行统计学比较。用logistic回归分析讨论LEASO的影响因素,绘制ROC曲线并用曲线下面积(Area under curve, AUC)来对LEASO进行诊断预测。P < 0.05表示差异具有统计学意义。

3. 结果

3.1. 各组间基线数据比较

本次研究分析了患者的基线特征,包括性别、年龄、体重指数(Body Mass Index, BMI)、吸烟、饮酒、高血压及糖尿病,LEASO和健康对照人群2组患者在年龄、BMI和饮酒方面上没有显著差异(P > 0.05),说明具有较好的可比性。与健康对照组相比,LEASO患者组中男性患者比例较高。此外,LEASO组患者在吸烟、高血压和糖尿病的人数占比上也显著高于健康对照组(P < 0.05) (表2)。

Table 2. Baseline information sheet

2. 基线资料表

变量

Total

LEASO (n = 82)

Control (n = 40)

P-Value

性别(n%)

122

男61,女21

男20,女20

0.007

年龄(岁)

72.26 ± 8.10

71.65 ± 8.87

73.53 ± 6.16

0.177

BMI (kg/m2)

23.61 ± 2.60

23.51 ± 2.33

23.82 ± 3.11

0.577

吸烟(n%)

50 (41.0%)

40 (48.8%)

10 (25.0%)

0.012

饮酒(n%)

43 (35.2%)

33 (40.2%)

10 (25.0%)

0.098

高血压(n%)

76 (62.3%)

58 (70.7%)

18 (45.0%)

0.006

糖尿病(n%)

65 (53.3%)

51 (62.2%)

14 (35.0%)

0.005

3.2. sVCAM-1在不同组别中表达情况

3.2.1. sVCAM-1在2组中存在表达差异

通过酶联免疫吸附法(ELISA)检测健康对照组、LEASO组共122例血清样本中sVCAM-1的相对表达量。采用Shapiro-Wilk法对两组中sVCAM-1的表达量进行正态分布检验(表3),结果两组中sVCAM-1的表达量不完全符合正态性假设(P < 0.05)。

Table 3. Test for normal distribution of sVCAM-1 expression in 2 groups

3. sVCAM-1在2组中表达情况的正态分布检验

组别

Shapiro-Wilk

统计

自由度

显著性

健康对照组

0.801

40

< 0.001

LEASO

0.878

82

< 0.001

将不符合正态分布的2组sVCAM-1表达量进行非参数检验(表4),结果显示sVCAM-1在健康对照组和LEASO组2个组别中的表达存在显著差异,LEASO组中sVCAM-1的表达量高于健康对照组(P < 0.05)。将各组sVCAM-1的表达量绘制散点图(图1),从散点图也可以看出LEASO组患者血清中sVCAM-1的表达量高于健康对照组(P < 0.05)。

Table 4. Nonparametric rank test for sVCAM-1 expression in 2 groups

4. 2组中sVCAM-1的表达量非参数秩检验

分组

个案数

秩平均值

渐进显著性

健康对照组

40

35.76

< 0.001

LEASO组

82

74.05

Figure 1. Relative expression of sVCAM-1 in serum of healthy control group, LEASO group

1. sVCAM-1在健康对照组、LEASO组血清中的相对表达量

3.2.2. sVCAM-1在LEASO组中单、双侧患肢中的表达差异

采用Shapiro-Wilk法对单侧患肢组与双侧患肢组中sVCAM-1的表达量进行正态分布检验(表5),结果显示sVCAM-1表达量均不服从正态分布(P < 0.05)。用非参数秩检验对两组中sVCAM-1的表达量进行分析(表6),结果显示sVCAM-1在单侧患肢和双侧患肢中的表达量差异没有统计学意义(P > 0.05)。将单侧患肢组和双侧患肢组的sVCAM-1的表达量绘制散点图(图2),在散点图中,可以看出两组sVCAM-1的表达量未见明显差别。

Table 5. Test for normal distribution of sVCAM-1 in unilateral versus bilateral affected limb groups in the LEASO group

5. sVCAM-1在LEASO组单侧患肢与双侧患肢组中的正态分布检验

组别

病例(n)

sVCAM-1

统计

显著性

单侧患肢

36

758.11 ± 380.45

0.89

0.002

双侧患肢

46

898.29 ± 380.18

0.841

< 0.001

Table 6. Nonparametric rank test for relative expression of sVCAM-1 in unilateral versus bilateral affected limb groups in the LEASO group

6. LEASO组单侧患肢与双侧患肢组中sVCAM-1的相对表达量非参数秩检验

分组

个案数

秩平均值

渐进显著性

单侧患肢

36

36.94

0.125

双侧患肢

46

45.07

Figure 2. Relative expression of sVCAM-1 in the unilateral affected limb group versus the bilateral affected limb group in the LEASO group

2. sVCAM-1在LEASO组单侧患肢组与双侧患肢组的相对表达量

3.2.3. sVAM-1在LEASO组中膝上、膝下及膝上膝下动脉病变合并中的表达差异

采用Shapiro-Wilk法对膝上、膝下及膝上膝下动脉病变合并组中sVCAM-1的表达量进行正态分布检验(表7),结果显示sVCAM-1表达量均不服从正态分布(P < 0.05)。用非参数秩检验对三组中sVCAM-1的表达量进行分析(表8),结果显示sVCAM-1在膝上动脉病变组和膝上膝下动脉病变合并组中的表达量高于膝下动脉病变组(P < 0.05)将膝上组、膝下组和膝上膝下合并组的sVCAM-1的表达量绘制散点图(图3),在散点图中,可以看出膝上动脉病变组sVCAM-1的表达最高,此外,膝上膝下动脉病变合并组sVCAM-1的表达高于膝下动脉病变组(P < 0.05)。

Table 7. Relative expression of sVCAM-1 in the unilateral affected limb group versus the bilateral affected limb group in the LEASO group

7. sVCAM-1在LEASO组膝上、膝下及膝上膝下动脉病变合并组中的正态分布检验

组别

病例(n)

sVCAM-1

统计

显著性

膝上

18

1001.40 ± 342.85

0.856

0.011

膝下

20

641.92 ± 367.28

0.85

0.005

膝上膝下合并

44

857.95 ± 377.84

0.852

< 0.001

Table 8. Nonparametric rank test for the relative expression of sVCAM-1 in the above-knee, below-knee, and combined above-knee and below-knee groups of the LEASO group

8. LEASO组膝上、膝下及膝上膝下合并组中sVCAM-1的相对表达量非参数秩检验

分组

个案数

秩平均值

渐进显著性

膝上

18

51.89

< 0.001

膝下

20

27.55

膝上膝下合并

44

43.59

Figure 3. Relative expression of sVCAM-1 in the above-knee, below-knee and combined above-knee and below-knee groups of the LEASO group

3. sVCAM-1在LEASO组膝上、膝下及膝上膝下合并组的相对表达量

3.3. Fontaine分期与sVCAM-1表达量的关系

将LEASO组患者按照Fontaine分期进行分组,分为Fontaine I期(11例,13.41%)、Fontaine II期(40例,48.78%)、Fontaine III期(15例,18.29%)、Fontaine IV期(16例,19.51%)。统计每组的sVCAM-1表达量并绘制散点图(表9图4),可以看到随着Fontaine分期的升高,sVCAM-1的表达量也在逐步升高,但Fontaine IV期sVCAM-1的表达量较前有所下降。

Table 9. Relationship between Fontaine staging and sVCAM-1 expression

9. Fontaine分期与sVCAM-1表达量的关系

Fontaine

I期

II期

III期

IV期

病例(n%)

11 (13.41%)

40 (48.78%)

15 (18.29%)

16 (19.51%)

sVCAM-1

502.66 ± 312.91

802.94 ± 383.17

1097.86 ± 282.77

906.17 ± 343.44

Figure 4. Relative expression of sVCAM-1 in Fontaine staging in the LEASO group

4. LEASO组Fontaine分期中sVCAM-1相对表达量

3.4. LEASO的影响因素分析

将健康对照组与LEASO组患者的实验室血生化有代表性的检查指标以及sVCAM-1进行单因素logistic回归分析,单因素结果显示TG、TC、HDL-C、LDL-C、sVCAM-1是LEASO患病的影响因素(P < 0.001) (表10)。

Table 10. One-way logistic regression analysis of LEASO influencing factors

10. 单因素logistic回归分析LEASO影响因素

影响因素

B

S.E

Wals

P

Exp(B)

95%CI fro Exp(B)

下限

上限

TG

−1.284

0.229

31.487

< 0.001

0.277

0.177

0.434

TC

0.847

0.246

11.83

< 0.001

2.332

1.439

3.777

HDL-C

−2.295

0.808

8.079

0.004

0.101

0.021

0.49

LDL-C

0.555

0.155

12.77

< 0.001

1.743

1.285

2.363

BUN

−0.187

0.22

0.725

0.395

0.829

0.539

1.276

CR

0.013

0.008

2.967

0.085

1.013

0.998

1.028

NLR

0.027

0.044

0.374

0.541

1.028

0.942

1.121

PLR

−0.001

0.001

0.499

0.48

0.999

0.997

1.001

sVCAM-1

0.003

0.001

21.205

< 0.001

1.003

1.002

1.005

注:TG:甘油三酯、TC:总胆固醇、HDL-C:高密度脂蛋白胆固醇、LDL-C低密度脂蛋白胆固醇、BUN:尿素氮、CR:肌酐、NLR:中性粒细胞与淋巴细胞比值、PLR:血小板与淋巴细胞比值。

对单因素二项logistic回归分析中差异有统计学意义且为正相关的实验室指标为自变量进行多因素二项logistic回归,结果显示TC (OR = 2.222, 95%CI: 1.323~3.730)、LDL-C (OR = 1.802, 95%CI: 1.232~2.637)、sVCAM-1 (OR = 1.003, 95%CI: 1.001~1.005)是发生LEASO的独立危险因素(表11)。

Table 11. Multifactor logistic regression analysis of LEASO influences

11. 多因素logistic回归分析LEASO影响因素

影响因素

B

S.E

Wals

P

Exp(B)

95%CI fro Exp(B)

下限

上限

TC

0.798

0.264

9.117

0.003

2.222

1.323

3.730

LDL-C

0.589

0.194

9.207

0.002

1.802

1.232

2.637

sVCAM-1

0.003

0.001

14.027

<0.001

1.003

1.001

1.005

3.4. sVCAM-1联合实验室指标预测LEASO的效能比较

以多因素logistic回归分析中差异有统计学意义的指标为检验变量,以是否发生LEASO为状态变量,绘制ROC曲线(表12图5)。结果显示,sVCAM-1单独对LEASO进行预测的曲线下面积(Area under curve, AUC)为0.814。将sVCAM-1 + TC + LDL-C进行联合预测,结果为AUC = 0.863,95%CI:0.800~0.926,P < 0.001 (图6)。与sVCAM-1单独预测曲线下面积相比,sVCAM-1 + TC + LDL-C联合预测曲线下面积更大,诊断效能更高。

Table 12. Comparison of the efficacy of various laboratory indicators in predicting LEASO

12. 各实验室指标预测LEASO的效能比较

指标

AUC

95%CI

cut-off值

P

灵敏度(%)

特异度(%)

约登指数

TC

0.716

0.622~0.810

3.28

< 0.001

68.3

70

0.383

LDL-C

0.709

0.617~0.800

7.08

< 0.001

35.4

100

0.354

sVCAM-1

0.814

0.736~0.892

347.35

< 0.001

87.8

57.5

0.453

Figure 5. ROC curves for the prediction of LEASO by each laboratory indicator

5. 各实验室指标预测LEASO的ROC曲线

Figure 6. Combined sVCAM-1 + TC + LDL-C predicts ROC curves in LEASO

6. sVCAM-1 + TC + LDL-C联合预测LEASO的ROC曲线

4. 讨论

LEASO是外周血管疾病中较为常见的一种疾病,其具有较高的致残、致死率,严重影响患者的生活质量和预期寿命。近年来,我国LEASO的患病人数也呈逐年上升的趋势[12]。据研究表明,即使在医疗条件发达的西方国家,每年仍有大量的LEASO患者因没有及时得到救治从而导致截肢甚至死亡[13]。因此,LEASO患者应尽早行规范化的诊断及治疗以免错过最佳的诊治时间。因此筛选与LEASO发病有关的高危危险因素,找到可以有效预测LEASO病情变化的血清学标志,对于LEASO的早期诊治,降低LEASO患者的致残、致死率具有十分重要的意义。

LEASO的发病原因主要为动脉粥样硬化(AS),其常见的危险因素主要包括:吸烟、高龄、肥胖、高血压、糖尿病等[14]。有指南指出,糖尿病患者LEASO的发病率是非糖尿病患者的3~4倍,间歇性跛行发生率是非糖尿病患者的2倍[15]。大量研究表明餐后血糖持续升高与血管的病变密切相关[16] [17]。高血压被认为是动脉粥样硬化的高危危险因素,其可以加速AS的形成,升高sVCAM-1水平,加剧心血管疾病的发生。吸烟对于LEASO的发生与发展也具有促进作用。烟草燃烧可产生多达上千种化学物质,其成分主要包括:NO、乙醛、甲醛、丙烯醛等其他羰基化合物以及尼古丁等各种微粒物质[18] [19]。这些化学物质可以通过促进凝血、降低纤维蛋白的溶解、增强血小板聚集来增加血液的粘稠度以及收缩血管、使动脉痉挛、造成血管壁缺氧损伤内皮细胞的结构和功能等作用,导致AS的发生与发展[20]。据研究表明香烟烟雾引起的氧化应激和活性氧物质的产生也可增加VCAM-1的表达[21]

在本实验中,LEASO组中的吸烟者、高血压患者以及糖尿病患者均显著高于健康对照组(P < 0.05),这与我们预期的结果相符合。因此长期吸烟者、高血压及糖尿病患者应定期到医院行相关检查,预防LEASO的发生。LEASO患者应戒掉吸烟习惯、密切检测自身血压、血糖调控情况,尽最大可能延缓疾病的进展。

血管细胞黏附分子-1 (Vascular cellular adhesion molecule-1, VCAM-1)是一种细胞黏附分子(cell adhesion molecules, CAMs),属于免疫球蛋白超家族成员之一,于1989年作为内皮细胞表面糖蛋白被首次发现。VCAM-1在肿瘤坏死因子α转换酶(Tumor necrosis factor-α converting enzyme, TACE)的作用下产生可溶形式的VCAM-1,即sVCAM-1 [22]。血液中的sVCAM-1与内皮细胞表达的VCAM-1的水平一致,可侧面反映出血管内皮黏附分子的水平及内皮细胞的相关活性。由于sVCAM-1的测定相对经济实惠且便于操作,目前国内外研究多采用检测血液中sVCAM-1的水平的方法来间接表示VCAM-1的表达[23]。在心血管疾病中,VCAM-1可以通过促进白细胞浸润、内皮细胞的功能、增殖与迁移、中性粒细胞募集等过程影响动脉粥样硬化的发生与发展[24]。已有研究表明,VCAM-1可以作为一些血管疾病的诊断和预后生物标志物,包括缺血性心肌病[25]、急性心肌炎[26]等。在本研究中,LEASO组sVCAM-1的表达量显著高于健康对照组(P < 0.01),提示sVCAM-1参与AS的发生与发展,这与以往研究结果一致。此外在LEASO组分组中。结果显示,随着Fontaine分期的升高,sVCAM-1的表达量也在逐步升高,但Ⅳ期组患者sVCAM-1表达量较Ⅲ期有所减少,我们推测sVCAM-1与LEASO病变的严重程度可能存在一定的关系。此外,我们还根据病变的患肢以及病变涉及的下肢血管部位将LEASO组分组并进行了实验。结果发现单下肢病变组与双下肢病变组sVCAM-1的表达无显著性差异(P > 0.05)但在根据病变涉及的下肢血管部位分组中,sVCAM-1在膝上动脉病变组的表达量最高(P < 0.01),此外,膝上合并膝下动脉病变组sVCAM-1的表达量高于膝下动脉病变组(P < 0.01)。我们推测sVCAM-1与LEASO病变涉及的血管部位存在一定的关系。但考虑到选择的样品量过少,分组不细致、实验误差等原因可能会导致实验结果出现偏倚,仍需进一步实验验证sVCAM-1表达量与Fontaine分期以及LEASO病变部位之间的关系。

在本次实验中,我们还收集了入组者相关实验室检查结果,将sVCAM-1与这些实验室指标共同进行logistic回归分析,评估sVCAM-1是否可以作为独立的危险因素。单因素二项logistic回归分析结果显示:TC (OR = 2.222, 95%CI: 1.323~3.730)、LDL-C (OR = 1.802, 95%CI: 1.232~2.637)、sVCAM-1 (OR = 1.003, 95%CI: 1.001~1.005)是发生LEASO的独立危险因素。在过去二十年间的诸多研究中,AS已逐渐被认为是一种脂质异常驱动的慢性动脉壁炎症性疾病[27]。大量研究已经证实,LDL-C是心血管事件的主要危险因素[28] [29]。但提高HDL-C水平被认为可以预防AS的发生和发展[30] [31]。这与我们的实验结果一致。本实验中,单因素logistic回归分析结果显示TC、LDL-C是LEASO的独立危险因素,HDL-C是LEASO的保护因素。此外,据研究表明,TG可通过增加血浆的粘稠度、损伤微循环的环流量以及增强AS脂蛋白与内皮之间的相互作用来增加AS的风险[32]。但是本次实验的研究结果显示TG与LEASO的相关系数为负数,这可能是我们的标本量较少导致的偏倚。同时,我们也将sVCAM-1有统计学意义的实验室指标相联合进行预测,受试者工作曲线面积较sVCAM-1单独预测面积更大,预测结果显示联合预测较单一指标对LEASO进行预测的灵敏度相较于sVCAM-1单独预测效能要强。

5. 总结

LEASO患者血清中sVCAM-1的表达量较健康人群表达量较高,这表明sVCAM-1可能参与AS的发生和发展。在LEASO患者中,sVCAM-1的表达量在不同患肢组中并没有显著差异。但在病变涉及的血管部位分组中,膝上动脉病变组和膝上合并膝下动脉病变组sVCAM-1表达量较膝下动脉病变组表达量较高。在根据Fontaine分期进行的分组中,sVCAM-1在各组中的表达量也呈不同程度的增高趋势,这表明sVCAM-1与疾病的进展严重程度以及病变部位可能存在一定的相关性。将实验室指标与sVCAM-1进行LEASO的logistic回归分析,得出TC、LDL-C、sVCAM-1是LEASO独立危险因素。sVCAM-1联合有意义的实验室指标对LEASO作诊断预测,得到的曲线下面积灵敏度较强。这些结果表明,sVCAM-1参与AS疾病的发生和发展。通过检测血清sVCAM-1的表达量,或许可以为LEASO的诊断、分期和治疗提供新的思路和方法。

NOTES

*通讯作者。

参考文献

[1] 中华医学会外科学分会血管外科学组. 下肢动脉硬化闭塞症诊治指南[J]. 中华普通外科学文献(电子版), 2016, 10(1): 1-18.
[2] Song, P., Rudan, D., Wang, M., Chang, X. and Rudan, I. (2019) National and Subnational Estimation of the Prevalence of Peripheral Artery Disease (PAD) in China: A Systematic Review and Meta-Analysis. Journal of Global Health, 9, Article 010601.
https://doi.org/10.7189/jogh.09.010601
[3] 尹智明, 余朝文. 下肢动脉硬化闭塞症腔内介入治疗的研究进展[J]. 中国普通外科杂志, 2017, 26(6): 789-794.
[4] Gerhard-Herman, M.D., Gornik, H.L., Barrett, C., et al. (2017) 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 135, e686-e725.
[5] Aboyans, V., Ricco, J., Bartelink, M.E.L., Björck, M., Brodmann, M., Cohnert, T., et al. (2017) 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in Collaboration with the European Society for Vascular Surgery (ESVS). European Heart Journal, 39, 763-816.
https://doi.org/10.1093/eurheartj/ehx095
[6] Firnhaber, J.M. and Powell, C.S. (2019) Lower Extremity Peripheral Artery Disease: Diagnosis and Treatment. American Family Physician, 99, 362-369.
[7] Conte, M.S., Pomposelli, F.B., Clair, D.G., Geraghty, P.J., McKinsey, J.F., Mills, J.L., et al. (2015) Society for Vascular Surgery Practice Guidelines for Atherosclerotic Occlusive Disease of the Lower Extremities: Management of Asymptomatic Disease and Claudication. Journal of Vascular Surgery, 61, 2S-41S.e1.
https://doi.org/10.1016/j.jvs.2014.12.009
[8] Cook-Mills, J.M., Marchese, M.E. and Abdala-Valencia, H. (2011) Vascular Cell Adhesion Molecule-1 Expression and Signaling during Disease: Regulation by Reactive Oxygen Species and Antioxidants. Antioxidants & Redox Signaling, 15, 1607-1638.
https://doi.org/10.1089/ars.2010.3522
[9] Dessein, P.H., Joffe, B.I. and Singh, S. (2005) Biomarkers of Endothelial Dysfunction, Cardiovascular Risk Factors and Atherosclerosis in Rheumatoid Arthritis. Arthritis Research & Therapy, 7, R634-R643.
https://doi.org/10.1186/ar1717
[10] Troncoso, M.F., Ortiz-Quintero, J., Garrido-Moreno, V., Sanhueza-Olivares, F., Guerrero-Moncayo, A., Chiong, M., et al. (2021) VCAM-1 as a Predictor Biomarker in Cardiovascular Disease. Biochimica et Biophysica ActaMolecular Basis of Disease, 1867, Article 166170.
https://doi.org/10.1016/j.bbadis.2021.166170
[11] Fathollahi, A., Massoud, A., Amirzargar, A.A., Aghili, B., Nasli Esfahani, E. and Rezaei, N. (2018) sICAM-1, sVCAM-1 and sE-Selectin Levels in Type 1 Diabetes. Fetal and Pediatric Pathology, 37, 69-73.
https://doi.org/10.1080/15513815.2017.1405467
[12] Wang, Z., Wang, X., Hao, G., Chen, Z., Zhang, L., Shao, L., et al. (2019) A National Study of the Prevalence and Risk Factors Associated with Peripheral Arterial Disease from China: The China Hypertension Survey, 2012-2015. International Journal of Cardiology, 275, 165-170.
https://doi.org/10.1016/j.ijcard.2018.10.047
[13] Mundi, S., Massaro, M., Scoditti, E., Carluccio, M.A., van Hinsbergh, V.W.M., Iruela-Arispe, M.L., et al. (2017) Endothelial Permeability, LDL Deposition, and Cardiovascular Risk Factors—A Review. Cardiovascular Research, 114, 35-52.
https://doi.org/10.1093/cvr/cvx226
[14] Ankle Brachial Index Collaboration, Fowkes, F.G., Murray, G.D., et al. (2008) Ankle Brachial Index Combined with Framingham Risk Score to Predict Cardiovascular Events and Mortality: A Meta-Analysis. Journal of the American Medical Association, 300, 197-208.
[15] Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A. and Fowkes, F.G.R. (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Journal of Vascular Surgery, 45, S5-S67.
https://doi.org/10.1016/j.jvs.2006.12.037
[16] Temelkova-Kurktschiev, T.S., Koehler, C., Henkel, E., Leonhardt, W., Fuecker, K. and Hanefeld, M. (2000) Postchallenge Plasma Glucose and Glycemic Spikes Are More Strongly Associated with Atherosclerosis than Fasting Glucose or Hba1c Level. Diabetes Care, 23, 1830-1834.
https://doi.org/10.2337/diacare.23.12.1830
[17] Aronow, W.S., Ahn, C., Weiss, M.B. and Babu, S. (2007) Relation of Increased Hemoglobin A1c Levels to Severity of Peripheral Arterial Disease in Patients with Diabetes Mellitus. The American Journal of Cardiology, 99, 1468-1469.
https://doi.org/10.1016/j.amjcard.2006.12.085
[18] Centner, A.M., Bhide, P.G. and Salazar, G. (2020) Nicotine in Senescence and Atherosclerosis. Cells, 9, Article 1035.
https://doi.org/10.3390/cells9041035
[19] Salahuddin, S., Prabhakaran, D. and Roy, A. (2012) Pathophysiological Mechanisms of Tobacco-Related CVD. Global Heart, 7, 113-120.
https://doi.org/10.1016/j.gheart.2012.05.003
[20] Klein, L.W. (2022) Pathophysiologic Mechanisms of Tobacco Smoke Producing Atherosclerosis. Current Cardiology Reviews, 18, e110422203389.
https://doi.org/10.2174/1573403x18666220411113112
[21] Kamceva, G., Arsova-Sarafinovska, Z., Ruskovska, T., Zdravkovska, M., Kamceva-Panova, L. and Stikova, E. (2016) Cigarette Smoking and Oxidative Stress in Patients with Coronary Artery Disease. Open Access Macedonian Journal of Medical Sciences, 4, 636-640.
https://doi.org/10.3889/oamjms.2016.117
[22] Garton, K.J., Gough, P.J., Philalay, J., Wille, P.T., Blobel, C.P., Whitehead, R.H., et al. (2003) Stimulated Shedding of Vascular Cell Adhesion Molecule 1 (VCAM-1) Is Mediated by Tumor Necrosis Factor-Α-Converting Enzyme (ADAM 17). Journal of Biological Chemistry, 278, 37459-37464.
https://doi.org/10.1074/jbc.m305877200
[23] Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., et al. (2002) Therapeutic Angiogenesis for Patients with Limb Ischaemia by Autologous Transplantation of Bone-Marrow Cells: A Pilot Study and a Randomized Controlled Trial. The Lancet, 360, 427-435.
https://doi.org/10.1016/s0140-6736(02)09670-8
[24] Yu, J., Liu, Y., Peng, W. and Xu, Z. (2022) Serum VCAM-1 and ICAM-1 Measurement Assists for mace Risk Estimation in ST-Segment Elevation Myocardial Infarction Patients. Journal of Clinical Laboratory Analysis, 36, e24685.
https://doi.org/10.1002/jcla.24685
[25] Wilhelmi, M., Leyh, R., Wilhelmi, M. And Haverich, A. (2005) Upregulation of Endothelial Adhesion Molecules in Hearts with Congestive and Ischemic Cardiomyopathy: Immunohistochemical Evaluation of Inflammatory Endothelial Cell Activation. European Journal of Cardio-Thoracic Surgery, 27, 122-127.
https://doi.org/10.1016/j.ejcts.2004.09.027
[26] Grabmaier, U., Kania, G., Kreiner, J., Grabmeier, J., Uhl, A., Huber, B.C., et al. (2016) Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM). PLOS ONE, 11, e0158299.
https://doi.org/10.1371/journal.pone.0158299
[27] Seneviratne, A. and Monaco, C. (2015) Role of Inflammatory Cells and Toll-Like Receptors in Atherosclerosis. Current Vascular Pharmacology, 13, 146-160.
https://doi.org/10.2174/15701611113116660160
[28] Ference, B.A., Ginsberg, H.N., Graham, I., Ray, K.K., Packard, C.J., Bruckert, E., et al. (2017) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38, 2459-2472.
https://doi.org/10.1093/eurheartj/ehx144
[29] Imes, C.C. and Austin, M.A. (2012) Low-Density Lipoprotein Cholesterol, Apolipoprotein B, and Risk of Coronary Heart Disease. Biological Research for Nursing, 15, 292-308.
https://doi.org/10.1177/1099800412436967
[30] Catapano, A.L., Graham, I., de Backer, G., Wiklund, O., Chapman, M.J., Drexel, H., et al. (2016) 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. European Heart Journal, 37, 2999-3058.
https://doi.org/10.1093/eurheartj/ehw272
[31] Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2019) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-188.
https://doi.org/10.1093/eurheartj/ehz455
[32] Rosenson, R.S., Shott, S., Lu, L. and Tangney, C.C. (2001) Hypertriglyceridemia and Other Factors Associated with Plasma Viscosity. The American Journal of Medicine, 110, 488-492.
https://doi.org/10.1016/s0002-9343(01)00643-x

Baidu
map