[1] |
Pereira, A.L., Galli, S. and Nombela‐Arrieta, C. (2024) Bone Marrow Niches for Hematopoietic Stem Cells. HemaSphere, 8, e133. https://doi.org/10.1002/hem3.133 |
[2] |
Sakurai, M. (2023) Recent Advances in ex Vivo Expansion of Human Hematopoietic Stem Cells. Blood Cell Therapy, 6, 151-157. |
[3] |
Siyah, P. and Kocabaş, F. (2024) Isolation of Human Hematopoietic Stem Cells from an Apheresis Sample. In: Protocol, Springer US, 1-9. https://doi.org/10.1007/7651_2024_557 |
[4] |
Bourgine, P.E., Fritsch, K., Pigeot, S., Takizawa, H., Kunz, L., Kokkaliaris, K.D., et al. (2019) Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience, 19, 504-513. https://doi.org/10.1016/j.isci.2019.08.006 |
[5] |
Kokkaliaris, K.D. and Scadden, D.T. (2020) Cell Interactions in the Bone Marrow Microenvironment Affecting Myeloid Malignancies. Blood Advances, 4, 3795-3803. https://doi.org/10.1182/bloodadvances.2020002127 |
[6] |
Leimkühler, N.B. and Schneider, R.K. (2019) Inflammatory Bone Marrow Microenvironment. Hematology, 2019, 294-302. https://doi.org/10.1182/hematology.2019000045 |
[7] |
Guan, J., Zhao, Y., Wang, T. and Fu, R. (2023) Traditional Chinese Medicine for Treating Aplastic Anemia. Journal of Pharmacy & Pharmaceutical Sciences, 26, Article ID: 11863. https://doi.org/10.3389/jpps.2023.11863 |
[8] |
Zheng, G., Zhang, H., Yang, Y., Sun, Y., Zhang, Y., Chen, J., et al. (2018) Systems-Based Interactome Analysis for Hematopoiesis Effect of Angelicae Sinensis Radix: Regulated Network of Cell Proliferation Towards Hemopoiesis. Chinese Journal of Integrative Medicine, 25, 939-947. https://doi.org/10.1007/s11655-018-3003-5 |
[9] |
Huang, R., Dai, Q., Yang, R., Duan, Y., Zhao, Q., Haybaeck, J., et al. (2022) A Review: PI3K/Akt/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Frontiers in Oncology, 12, Article ID: 817916. https://doi.org/10.3389/fonc.2022.817916 |
[10] |
Du, H., Jiang, J., Wu, S., Shi, Y., Liu, H., Hua, Z., et al. (2024) Fucoxanthin Inhibits the Proliferation and Metastasis of Human Pharyngeal Squamous Cell Carcinoma by Regulating the PI3K/Akt/mTOR Signaling Pathway. Molecules, 29, Article No. 3603. https://doi.org/10.3390/molecules29153603 |
[11] |
He, Y., Sun, M.M., Zhang, G.G., Yang, J., Chen, K.S., Xu, W.W., et al. (2021) Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Signal Transduction and Targeted Therapy, 6, Article No. 425. https://doi.org/10.1038/s41392-021-00828-5 |
[12] |
Ye, M., Liu, G., Yang, Y., Yang, H., Ren, J., Chen, W., et al. (2023) Network Pharmacology and Experimental Verification of the Potential Mechanism of Er-Xian Decoction in Aplastic Anemia. Scientific Reports, 13, Article No. 17385. https://doi.org/10.1038/s41598-023-44672-9 |
[13] |
Collins, A., Mitchell, C.A. and Passegué, E. (2021) Inflammatory Signaling Regulates Hematopoietic Stem and Progenitor Cell Development and Homeostasis. Journal of Experimental Medicine, 218, e20201545. https://doi.org/10.1084/jem.20201545 |
[14] |
Liu, P., Li, Y., Wang, W., Bai, Y., Jia, H., Yuan, Z., et al. (2022) Role and Mechanisms of the NF-ĸB Signaling Pathway in Various Developmental Processes. Biomedicine & Pharmacotherapy, 153, Article ID: 113513. https://doi.org/10.1016/j.biopha.2022.113513 |
[15] |
Zhang, Y. and Wang, X. (2020) Targeting the Wnt/β-Catenin Signaling Pathway in Cancer. Journal of Hematology & Oncology, 13, Article No. 165. https://doi.org/10.1186/s13045-020-00990-3 |
[16] |
Warsi, S., Blank, U., Dahl, M., et al. (2020) BMP Signaling Is Required for Postnatal Murine Hematopoietic Stem Cell Self-Renewal. Haematologica, 106, 2203-2214. https://doi.org/10.3324/haematol.2019.236125 |
[17] |
Huang, C., Yang, D., Ye, G.W., Powell, C.A. and Guo, P. (2021) Vascular Notch Signaling in Stress Hematopoiesis. Frontiers in Cell and Developmental Biology, 8, Article ID: 606448. https://doi.org/10.3389/fcell.2020.606448 |
[18] |
Jiang, Y., Xu, Z., Ma, N., Yin, L., Hao, C. and Li, J. (2020) Effects of Signaling Pathway Inhibitors on Hematopoietic Stem Cells. Molecular Medicine Reports, 23, Article No. 9. https://doi.org/10.3892/mmr.2020.11647 |
[19] |
Wang, W., Zhang, K., Dai, L., Hou, A., Meng, P. and Ma, J. (2024) Investigating the Protective Effects of Astragalus Polysaccharides on Cyclophosphamide-Induced Bone Marrow Suppression in Mice and Bone Mesenchymal Stem Cells. Molecular Immunology, 171, 93-104. https://doi.org/10.1016/j.molimm.2024.05.008 |
[20] |
Bao, W., Zhang, Q., Zheng, H., Li, L., Liu, M., Cheng, H., et al. (2021) Radix Astragali Polysaccharide RAP Directly Protects Hematopoietic Stem Cells from Chemotherapy-Induced Myelosuppression by Increasing FOS Expression. International Journal of Biological Macromolecules, 183, 1715-1722. https://doi.org/10.1016/j.ijbiomac.2021.05.120 |
[21] |
Zheng, Y., Ren, W., Zhang, L., Zhang, Y., Liu, D. and Liu, Y. (2020) A Review of the Pharmacological Action of Astragalus Polysaccharide. Frontiers in Pharmacology, 11, Article No. 349. https://doi.org/10.3389/fphar.2020.00349 |
[22] |
Yang, F., Lai, J., Deng, J., Du, J., Du, X., Zhang, X., et al. (2023) The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts. International Journal of Molecular Sciences, 24, Article No. 3168. https://doi.org/10.3390/ijms24043168 |
[23] |
Li, L., Xu, W., Yi, C., Cheng, Y., Xin, H., Xue, H., et al. (2020) Astragalus Polysaccharide Has a Protective Effect on Hematopoiesis in an Irradiated Mouse Model and Decreases Apoptosis in Megakaryocytes. Molecular Medicine Reports, 23, Article No. 15. https://doi.org/10.3892/mmr.2020.11653 |
[24] |
Li, C., Liu, Y., Zhang, Y., Li, J. and Lai, J. (2022) Astragalus Polysaccharide: A Review of Its Immunomodulatory Effect. Archives of Pharmacal Research, 45, 367-389. https://doi.org/10.1007/s12272-022-01393-3 |
[25] |
Wang, F., Qian, H., Kong, L., Wang, W., Wang, X., Xu, Z., et al. (2021) Accelerated Bone Regeneration by Astragaloside IV through Stimulating the Coupling of Osteogenesis and Angiogenesis. International Journal of Biological Sciences, 17, 1821-1836. https://doi.org/10.7150/ijbs.57681 |
[26] |
Liu, X., Zhang, H., Yan, J., Li, X., Li, J., Hu, J., et al. (2022) Deciphering the Efficacy and Mechanism of Astragalus membranaceus on High Altitude Polycythemia by Integrating Network Pharmacology and in Vivo Experiments. Nutrients, 14, Article No. 4968. https://doi.org/10.3390/nu14234968 |
[27] |
Liu, J., An, J., Jiang, N., Yang, K., Guan, C., Zhao, N., et al. (2023) Codonopsis pilosula Polysaccharides Promote Osteogenic Differentiation and Inhibit Lipogenic Differentiation of Rat Bone Marrow Stem Cells by Activating Β-catenin. Chemico-Biological Interactions, 385, Article ID: 110721. https://doi.org/10.1016/j.cbi.2023.110721 |
[28] |
Chu, R., Zhou, Y., Ye, C., Pan, R. and Tan, X. (2024) Advancements in the Investigation of Chemical Components and Pharmacological Properties of Codonopsis: A Review. Medicine, 103, e38632. https://doi.org/10.1097/md.0000000000038632 |
[29] |
邢秀玲, 赵海鹰, 李丽君, 等. 党参多糖对环磷酰胺所致小鼠贫血的治疗效果观察[J]. 临床误诊误治, 2022, 35(1): 99-102. |
[30] |
Luan, F., Ji, Y., Peng, L., Liu, Q., Cao, H., Yang, Y., et al. (2021) Extraction, Purification, Structural Characteristics and Biological Properties of the Polysaccharides from Codonopsis pilosula: A Review. Carbohydrate Polymers, 261, Article ID: 117863. https://doi.org/10.1016/j.carbpol.2021.117863 |
[31] |
Guo, H., Lou, Y., Hou, X., Han, Q., Guo, Y., Li, Z., et al. (2024) A Systematic Review of the Mechanism of Action and Potential Medicinal Value of Codonopsis pilosula in Diseases. Frontiers in Pharmacology, 15, Article ID: 1415147. https://doi.org/10.3389/fphar.2024.1415147 |
[32] |
Dai, T., Lan, J., Gao, R., Zhao, Y., Yu, X., Liang, S., et al. (2022) Panaxdiol Saponins Component Promotes Hematopoiesis by Regulating GATA Transcription Factors of Intracellular Signaling Pathway in Mouse Bone Marrow. Annals of Translational Medicine, 10, 38. https://doi.org/10.21037/atm-21-4800 |
[33] |
Li, N., Yang, C., Xia, J., Wang, W. and Xiong, W. (2024) Molecular Mechanisms of Codonopsis pilosula in Inhibiting Hepatocellular Carcinoma Growth and Metastasis. Phytomedicine, 128, Article ID: 155338. https://doi.org/10.1016/j.phymed.2024.155338 |
[34] |
Wang, J., Du, M. and Zheng, Y. (2024) Effect of Ginsenoside Rg1 on Hematopoietic Stem Cells in Treating Aplastic Anemia in Mice via MAPK Pathway. World Journal of Stem Cells, 16, 591-603. https://doi.org/10.4252/wjsc.v16.i5.591 |
[35] |
Lin, K., Zhang, J., Chung, H., Wu, X., Liu, B., Zhao, B., et al. (2022) Total Ginsenoside Extract from Panax ginseng Enhances Neural Stem Cell Proliferation and Neuronal Differentiation by Inactivating Gsk-3β. Chinese Journal of Integrative Medicine, 28, 229-235. https://doi.org/10.1007/s11655-021-3508-1 |
[36] |
Wang, S., Yang, X., Zhang, Y., Cai, E., Zheng, X., Zhao, Y., et al. (2020) Study on the Changes of Chemical Constituents in Different Compatibilities of Ginseng-Prepared Rehmannia Root and Their Effects on Bone Marrow Inhibition after Chemotherapy. Chemical and Pharmaceutical Bulletin, 68, 428-435. https://doi.org/10.1248/cpb.c19-00994 |
[37] |
Tian, T., Ko, C., Luo, W., Li, D. and Yang, C. (2023) The Anti-Aging Mechanism of Ginsenosides with Medicine and Food Homology. Food & Function, 14, 9123-9136. https://doi.org/10.1039/d3fo02580b |
[38] |
He, B., Chen, D., Zhang, X., Yang, R., Yang, Y., Chen, P., et al. (2022) Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9299574. https://doi.org/10.1155/2022/9299574 |
[39] |
Shi, M., Ma, J., Jin, S., Wang, T., Sui, Y. and Chen, L. (2024) Effects of Saponins Rb1 and Re in American ginseng Combined Intervention on Immune System of Aging Model. Frontiers in Molecular Biosciences, 11, Article ID: 1392868. https://doi.org/10.3389/fmolb.2024.1392868 |
[40] |
Wang, Y., Han, Q., Zhang, S., Xing, X. and Sun, X. (2023) New Perspective on the Immunomodulatory Activity of Ginsenosides: Focus on Effective Therapies for Post-Covid-19. Biomedicine & Pharmacotherapy, 165, Article ID: 115154. https://doi.org/10.1016/j.biopha.2023.115154 |
[41] |
Yu, W., Cai, S., Zhao, J., Hu, S., Zang, C., Xu, J., et al. (2024) Beyond Genome: Advanced Omics Progress of Panax ginseng. Plant Science, 341, Article ID: 112022. https://doi.org/10.1016/j.plantsci.2024.112022 |
[42] |
Guo, L.L., Yan, R.Y., Du, Z., Li, H.B., Li, G.L. and Wu, S.H. (2024) Ginseng Promotes the Function of Intestinal Stem Cells through the Wnt/β-Catenin Signaling Pathway in D-Galactose-Induced Aging Mice. Experimental Gerontology, 185, Article ID: 112351. https://doi.org/10.1016/j.exger.2023.112351 |
[43] |
Li, X., Cao, D., Sun, S. and Wang, Y. (2023) Anticancer Therapeutic Effect of Ginsenosides through Mediating Reactive Oxygen Species. Frontiers in Pharmacology, 14, Article ID: 1215020. https://doi.org/10.3389/fphar.2023.1215020 |
[44] |
Tran, M.N., Kim, N.S. and Lee, S. (2024) Biological Network Comparison Identifies a Novel Synergistic Mechanism of Ginseng Radix-Astragali Radix Herb Pair in Cancer-Related Fatigue. Journal of Ethnopharmacology, 333, Article ID: 118447. https://doi.org/10.1016/j.jep.2024.118447 |
[45] |
Wilkes, M.C., Jung, K., Lee, B.E., Saxena, M., Sathianathen, R.S., Mercado, J.D., et al. (2021) The Active Component of Ginseng, Ginsenoside Rb1, Improves Erythropoiesis in Models of Diamond-Blackfan Anemia by Targeting Nemo-Like Kinase. Journal of Biological Chemistry, 297, Article ID: 100988. https://doi.org/10.1016/j.jbc.2021.100988 |
[46] |
Liu, Y., Jiang, L., Song, W., Wang, C., Yu, S., Qiao, J., et al. (2023) Ginsenosides on Stem Cells Fate Specification—A Novel Perspective. Frontiers in Cell and Developmental Biology, 11, Article ID: 1190266. https://doi.org/10.3389/fcell.2023.1190266 |
[47] |
He, M., Wang, N., Zheng, W., Cai, X., Qi, D., Zhang, Y., et al. (2021) Ameliorative Effects of Ginsenosides on Myelosuppression Induced by Chemotherapy or Radiotherapy. Journal of Ethnopharmacology, 268, Article ID: 113581. https://doi.org/10.1016/j.jep.2020.113581 |
[48] |
Chen, H., Li, X., Chi, H., Li, Z., Wang, C., Wang, Q., et al. (2023) A Qualitative Analysis of Cultured Adventitious Ginseng Root’s Chemical Composition and Immunomodulatory Effects. Molecules, 29, Article No. 111. https://doi.org/10.3390/molecules29010111 |
[49] |
He, F. and Yao, G. (2021) Ginsenoside Rg1 as a Potential Regulator of Hematopoietic Stem/Progenitor Cells. Stem Cells International, 2021, Article ID: 4633270. https://doi.org/10.1155/2021/4633270 |
[50] |
Cao, H., Wei, W., Xu, R. and Cui, X. (2021) Ginsenoside Rg1 Can Restore Hematopoietic Function by Inhibiting Bax Translocation-Mediated Mitochondrial Apoptosis in Aplastic Anemia. Scientific Reports, 11, Article No. 12742. https://doi.org/10.1038/s41598-021-91471-1 |
[51] |
Wan, Y., Wang, J., Xu, J., Tang, F., Chen, L., Tan, Y., et al. (2021) Panax ginseng and Its Ginsenosides: Potential Candidates for the Prevention and Treatment of Chemotherapy-Induced Side Effects. Journal of Ginseng Research, 45, 617-630. https://doi.org/10.1016/j.jgr.2021.03.001 |
[52] |
Jiang, Y., Guo, K., Wang, P., Zhu, Y., Huang, J. and Ruan, S. (2022) The Antitumor Properties of Atractylenolides: Molecular Mechanisms and Signaling Pathways. Biomedicine & Pharmacotherapy, 155, Article ID: 113699. https://doi.org/10.1016/j.biopha.2022.113699 |
[53] |
Yang, L., Yu, H., Hou, A., Man, W., Wang, S., Zhang, J., et al. (2021) A Review of the Ethnopharmacology, Phytochemistry, Pharmacology, Application, Quality Control, Processing, Toxicology, and Pharmacokinetics of the Dried Rhizome of Atractylodes macrocephala. Frontiers in Pharmacology, 12, Article ID: 727154. https://doi.org/10.3389/fphar.2021.727154 |
[54] |
Luo, L., Cai, J., Zhou, Z., Tang, W., Xue, J., Liu, J., et al. (2022) Polysaccharides from Rhizoma atractylodis macrocephalae: A Review on Their Extraction, Purification, Structure, and Bioactivities. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 2338533. https://doi.org/10.1155/2022/2338533 |
[55] |
Li, Y., Teng, M., Yang, H., Li, S., Liu, X., Zhang, J., et al. (2024) Impact of Macrophage Differentiation on Hematopoietic Function Enhancement by Shenzhu Erkang Syrup. Aging, 16, 169-190. https://doi.org/10.18632/aging.205358 |
[56] |
Liu, C., Wang, S., Xiang, Z., Xu, T., He, M., Xue, Q., et al. (2022) The Chemistry and Efficacy Benefits of Polysaccharides from Atractylodes macrocephala Koidz. Frontiers in Pharmacology, 13, Article ID: 952061. https://doi.org/10.3389/fphar.2022.952061 |
[57] |
Chen, J. and Tsim, K.W.K. (2020) A Review of Edible Jujube, the Ziziphus jujuba Fruit: A Heath Food Supplement for Anemia Prevalence. Frontiers in Pharmacology, 11, Article ID: 593655. https://doi.org/10.3389/fphar.2020.593655 |
[58] |
Zhu, D., Jiang, N., Wang, N., Zhao, Y. and Liu, X. (2024) A Literature Review of the Pharmacological Effects of Jujube. Foods, 13, Article No. 193. https://doi.org/10.3390/foods13020193 |
[59] |
Li, M., Zhao, X., Xie, J., Tong, X., Shan, J., Shi, M., et al. (2022) Dietary Inclusion of Seabuckthorn (Hippophae rhamnoides) Mitigates Foodborne Enteritis in Zebrafish through the Gut-Liver Immune Axis. Frontiers in Physiology, 13, Article ID: 831226. https://doi.org/10.3389/fphys.2022.831226 |
[60] |
Drapeau, C., Benson, K.F. and Jensen, G.S. (2019) Rapid and Selective Mobilization of Specific Stem Cell Types after Consumption of a Polyphenol-Rich Extract from Sea Buckthorn Berries (Hippophae) in Healthy Human Subjects. Clinical Interventions in Aging, 14, 253-263. https://doi.org/10.2147/cia.s186893 |
[61] |
Wang, K., Xu, Z. and Liao, X. (2021) Bioactive Compounds, Health Benefits and Functional Food Products of Sea Buckthorn: A Review. Critical Reviews in Food Science and Nutrition, 62, 6761-6782. https://doi.org/10.1080/10408398.2021.1905605 |
[62] |
Chen, Y., Cai, Y., Wang, K. and Wang, Y. (2023) Bioactive Compounds in Sea Buckthorn and Their Efficacy in Preventing and Treating Metabolic Syndrome. Foods, 12, Article No. 1985. https://doi.org/10.3390/foods12101985 |
[63] |
Du, K., Wang, L., Wang, Z., Xiao, H., Hou, J., Hu, L., et al. (2023) Angelica sinensis Polysaccharide Antagonizes 5-Fluorouracil-Induced Spleen Injury and Dysfunction by Suppressing Oxidative Stress and Apoptosis. Biomedicine & Pharmacotherapy, 162, Article ID: 114602. https://doi.org/10.1016/j.biopha.2023.114602 |
[64] |
Shen, J., Qin, H., Li, K., Ding, H., Chen, X., Peng, M., et al. (2024) The Angelica Polysaccharide: A Review of Phytochemistry, Pharmacology and Beneficial Effects on Systemic Diseases. International Immunopharmacology, 133, Article ID: 112025. https://doi.org/10.1016/j.intimp.2024.112025 |
[65] |
Niu, Y., Xiao, H., Wang, B., Wang, Z., Du, K., Wang, Y., et al. (2023) Angelica sinensis Polysaccharides Alleviate the Oxidative Burden on Hematopoietic Cells by Restoring 5-Fluorouracil-Induced Oxidative Damage in Perivascular Mesenchymal Progenitor Cells. Pharmaceutical Biology, 61, 768-778. https://doi.org/10.1080/13880209.2023.2207592 |
[66] |
Chen, Z., Cheng, L., Zhang, J. and Cui, X. (2024) Exploring the Mechanism by Which Angelica sinensis Improves Haematopoietic Function in Aplastic Anaemia. Aging, 16, 11535-11552. https://doi.org/10.18632/aging.205971 |
[67] |
Chen, Z., Cheng, L., Zhang, J. and Cui, X. (2022) Retraction Note: Angelica sinensis Polysaccharide Prevents Mitochondrial Apoptosis by Regulating the Treg/Th17 Ratio in Aplastic Anemia. BMC Complementary Medicine and Therapies, 22, Article No. 277. https://doi.org/10.1186/s12906-022-03752-5 |
[68] |
Ou, L., Kang, W., Zhang, J., Liang, Z., Li, M., Gao, F., et al. (2021) Effects of Rehmannia glutinosa Polysaccharides on Bone Tissue Structure and Skeletal Muscle Atrophy in Rats with Disuse. Acta Cirúrgica Brasileira, 36, e360403. https://doi.org/10.1590/acb360403 |
[69] |
Liu, N., Liu, J., Liu, Y., Zhu, Q., Zheng, D., Li, F., et al. (2023) Rehmannia glutinosa Polysaccharide Regulates Bone Marrow Microenvironment via HIF-1α/Nf-κB Signaling Pathway in Aplastic Anemia Mice. Anais da Academia Brasileira de Ciências, 95, e20220672. https://doi.org/10.1590/0001-3765202320220672 |
[70] |
Liu, M., Cai, M. and Ding, P. (2021) Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. The American Journal of Chinese Medicine, 49, 577-608. https://doi.org/10.1142/s0192415x21500269 |
[71] |
Bian, Z., Zhang, R., Zhang, X., Zhang, J., Xu, L., Zhu, L., et al. (2023) Extraction, Structure and Bioactivities of Polysaccharides from Rehmannia glutinosa: A Review. Journal of Ethnopharmacology, 305, Article ID: 116132. https://doi.org/10.1016/j.jep.2022.116132 |
[72] |
Wang, H., Laram, Y., Hu, L., Hu, Y. and Chen, M. (2024) Exploring the Potential Mechanisms of Rehmannia glutinosa in Treating Sepsis Based on Network Pharmacology. BMC Infectious Diseases, 24, Article No. 893. https://doi.org/10.1186/s12879-024-09796-x |
[73] |
Yang, K., Zeng, L., Long, Z., He, Q., Xiang, W., Ge, A., et al. (2023) Efficacy and Safety of Total Glucosides of Paeony in the Treatment of 5 Types of Inflammatory Arthritis: A Systematic Review and Meta-Analysis. Pharmacological Research, 195, Article ID: 106842. https://doi.org/10.1016/j.phrs.2023.106842 |
[74] |
Wei, C., Shen, H. and Yu, H. (2024) Effects and Core Patterns of Chinese Herbal Medicines on Hematologic Manifestations in Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. Explore, 20, 168-180. https://doi.org/10.1016/j.explore.2023.08.004 |
[75] |
Liu, C., Li, J., Meng, F.Y., Liang, S.X., Deng, R., Li, C.K., et al. (2010) Polysaccharides from the Root of Angelica sinensis Promotes Hematopoiesis and Thrombopoiesis through the PI3K/AKT Pathway. BMC Complementary and Alternative Medicine, 10, Article No. 79. https://doi.org/10.1186/1472-6882-10-79 |
[76] |
Zhu, Y., Wang, L., Yang, Z., Wang, J., Li, W., Zhou, J., et al. (2016) Hematopoietic Effects of Paeoniflorin and Albiflorin on Radiotherapy‐Induced Myelosuppression Mice. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID: 5789381. https://doi.org/10.1155/2016/5789381 |
[77] |
Zhang, J., Wu, M., Ma, Z., Zhang, Y. and Cao, H. (2022) Species-Specific Identification of Donkey-Hide Gelatin and Its Adulterants Using Marker Peptides. PLOS ONE, 17, e0273021. https://doi.org/10.1371/journal.pone.0273021 |
[78] |
Liang, R., Xu, L., Fan, C., Cao, L. and Guo, X. (2023) Structural Characteristics and Antioxidant Mechanism of Donkey-Hide Gelatin Peptides by Molecular Dynamics Simulation. Molecules, 28, Article No. 7975. https://doi.org/10.3390/molecules28247975 |
[79] |
Wang, X., Peng, Y., Liang, H., Zahoor Khan, M., Ren, W., Huang, B., et al. (2024) Comprehensive Transcriptomic Analysis Unveils the Interplay of mRNA and LncRNA Expression in Shaping Collagen Organization and Skin Development in Dezhou Donkeys. Frontiers in Genetics, 15, Article ID: 1335591. https://doi.org/10.3389/fgene.2024.1335591 |
[80] |
Xing, Y., Yan, Z., Li, Y., Teka, T., Pan, G., Dou, Z., et al. (2021) An Effective Strategy for Distinguishing the Processing Degree of Polygonum multiflorum Based on the Analysis of Substance and Taste by LC-MS, ICP-OES and Electronic Tongue. Journal of Pharmaceutical and Biomedical Analysis, 205, Article ID: 114328. https://doi.org/10.1016/j.jpba.2021.114328 |
[81] |
Teka, T., Wang, L., Gao, J., Mou, J., Pan, G., Yu, H., et al. (2021) Polygonum multiflorum: Recent Updates on Newly Isolated Compounds, Potential Hepatotoxic Compounds and Their Mechanisms. Journal of Ethnopharmacology, 271, Article ID: 113864. https://doi.org/10.1016/j.jep.2021.113864 |
[82] |
Yang, X., Wang, L., Zeng, J., Wu, A., Qin, M., Wen, M., et al. (2022) Caulis polygoni multiflori Accelerates Megakaryopoiesis and Thrombopoiesis via Activating PI3K/Akt and MEK/ERK Signaling Pathways. Pharmaceuticals, 15, Article No. 1204. https://doi.org/10.3390/ph15101204 |
[83] |
Yan, R., Yang, Y. and Chen, Y. (2018) Pharmacokinetics of Chinese Medicines: Strategies and Perspectives. Chinese Medicine, 13, Article No. 24. https://doi.org/10.1186/s13020-018-0183-z |