羟基红花黄色素A保护心脏机制和药物吸收代谢
Mechanism of Cardiac Protection and Drug Absorption and Metabolism of Hydroxysafflor Yellow A
DOI: 10.12677/hjmce.2025.131009, PDF, HTML, XML,   
作者: 张丽琼:兰州交通大学生物与制药工程学院,甘肃 兰州
关键词: 羟基红花黄色素A心血管系统生物利用度Hydroxysafflor A Cardiovascular System Bioavailability
摘要: 羟基红花黄色素A (Hydroxysafflor yellow A, HSYA)属于查尔酮苷类化合物质,具有广泛的药理作用和生理活性,如扩张冠状动脉、抗氧化、保护心肌、降血压、免疫抑制和脑保护等多种药理功能。对心血管系统具有保护作用,但因羟基红花黄色素A是水溶性查尔酮,跨膜能力差,不易吸收,所以对提高其生物利用度显得尤为重要,本文梳理羟基红花黄色素A对心脏的保护作用和提高其生物利用度研究的最新进展。
Abstract: Hydroxysafflor A (Hydroxysafflor yellow A, HSYA) belongs to chalcone glycoside compounds, with a wide range of pharmacological effects and physiological activities, such as coronary expansion, antioxidant, myocardial protection, blood pressure reduction, immune suppression and brain protection and other pharmacological functions. It has a protective effect on the cardiovascular system, but because hydroxyl safflower A is water-soluble chalcone, its transmembrane ability is poor, and it is not easy to absorb, so it is particularly important to improve its bioavailability. This paper reviews the latest progress of the protective effect of hydroxyl safflower A on the heart and improving its bioavailability.
文章引用:张丽琼. 羟基红花黄色素A保护心脏机制和药物吸收代谢[J]. 药物化学, 2025, 13(1): 86-94. https://doi.org/10.12677/hjmce.2025.131009

1. 引言

羟基红花黄色素A (Hydroxysafflor yellow A, HSYA)是中药红花中分离出的一种黄酮类天然产物[1]。红花作为一种传统的药用植物,在全球多地均有种植,我国更是其主要产区之一,新疆、河南、四川等地均有大面积栽培,红花为菊科植物红花Carthamus tinctorius的干燥花,在中医药领域的应用历史悠久,有活血化瘀、通经止痛等功效,经研究,羟基红花黄色素A是红花发挥药理作用的关键有效成分之一[2]。HSYA属于黄酮类化合物中的单查尔酮苷类,分子结构中含有多个羟基,使得具有较强的极性和一定的水溶性,而独特的查尔酮苷结构则是其发挥多种生理活性的关键药效基团(图1)。

Figure 1. (A) Structure of red flower; (B) Structure of dried red flower and glycyrrhizin A

1. (A) 红花;(B) 红花干花和羟基甘草黄素A的结构式

其具有抗凝、抗缺氧、降血压、改善心脑血管供血不足[3]等作用,临床可用于防治心肌缺血、脑缺血[3]对羟基红花黄色素A的研究,不仅有助于揭示传统中药红花的药效物质基础,还能够推动中药现代化进程,使中药的作用机制从传统经验医学迈向精准的现代医学。

心脏栓塞性存在致残、致死和复发率较高的难题[4],羟基红花黄色素A对心脏的保护作用有望填补现有治疗手段的不足,为患者带来更多有效的治疗选择,促进医药健康产业的发展。红花的广泛种植以及相对成熟的提取工艺,使得羟基红花黄色素A能够较为稳定地供应科研与医药开发需求,为后续深入研究与应用奠定了坚实基础[5]

2. 保护心脏药理作用机制探究

2.1. 心血管系统保护作用

心脑血管疾病的特征是心脏、大脑和外周循环组织的缺血性或出血性病变,冠状动脉病变使得的血流急剧减少或中断,使相应的心肌出现严重而持久地急性缺血,最终导致心肌梗塞[6]。HSYA对心脏保护作用的机制与其抗氧化、自由基清除能力和抗炎活性有关。HSYA抑制过度炎症和TLR4过表达,可使梗死面积减小,减轻心脏损伤[7]。Nrf2作为心血管系统中抗氧化系统的主要调节因子,正成为心血管疾病的一个非常有前途的药理靶点,血红素加氧酶-1 (HO-1)作为Nrf2依赖性基因之一,HSYA通过增加该酶的表达,防止氧化应激[8]。HSYA的抗氧化作用参与预防AngⅡ心肌肥大(代偿心肌梗死),可能是因为通过激活核因子红细胞2相关因子2 (Nrf2)/NAD (P) H:醌氧化还原酶1/HO-1信号通路[9] [10]。HSYA增加缺血心肌中CD31、血管内皮生长因子和核仁素的表达,促进血管的生长。以剂量和时间依赖性方式增强核仁蛋白、血管内皮生长因子(VEGF-A)和基质金属蛋白酶-9 (MMP-9)的表达。核仁素通过转录后调节VEGF-A和MMP-9表达,这有助于HSYA对缺血性心功能不全的保护作用[11]

2.2. 抗心缺血再灌注损伤原理

2.2.1. HSYA减轻炎症反应导致心肌细胞凋亡

治疗缺铁性心脏病的过程中,恢复供血对维持心脏功能起重要作用,但同时,再灌注损伤引起的心肌梗死可占缺铁性心脏病死亡的一半[12],因此预防和治疗再灌注引起的损伤十分重要。心肌缺血–再灌注(MI/R)损伤发病机制复杂,细胞凋亡、自噬和炎症相互作用产生影响[13],其中炎症反应会导致急性期心肌细胞凋亡。HSYA减轻氧化应激:在炎症反应过程中会释放活性氧(ROS),如果ROS不能被及时清除,细胞内将启动氧化应激,最终导致细胞凋亡[14],线粒体是产生ROS的主要位点,再灌注引发的氧化应激、钙超载[15]等会导致线粒体膜通透性增加,线粒体膜电位下降,促进了促凋亡因子的生成,如细胞色素C、半胱天冬酶和凋亡诱导因子(AIF)从线粒体释放到细胞质,启动细胞凋亡级联反应[16],HSYA通过上调抗凋亡蛋白Bcl-2的表达,Bcl-2能够稳定线粒体膜电位,降低线粒体膜通透性转换孔的开放[17],减少细胞色素C的释放;同时,它还能直接抑制Caspase-3的活性,阻断凋亡信号的向下传递,从而减少神经细胞凋亡,促进神经功能恢复。HSYA上调BECN1、Atg5、LC3II的自噬蛋白表达,下调P62的表达[18],通过调控AMPK/mTOR信号通路,促进心肌自噬[19],抑制NLRP3炎症小体的激活[20] [21],通过Akt/Nrf2/HO-1信号通路增强了抗氧化防御系统和对MI/R损伤带来的细胞凋亡的抵抗作用[22]

2.2.2. HSYA保护血管系统

血红素加氧酶-1 (HO-1)是一种应激诱导的细胞保护酶,具有抗氧化、抗炎和抗凋亡作用,该酶在新生血管形成中起重要作用[23],HO-1的药理学诱导和HO-1基因修饰的EPC移植促进了MI后EPC介导的心肌新生血管形成[24]。HSYA可通过HO-1/VEGF-A/SDF-α信号级联促进EPCs功能[25],通过促进新生血管的形成从而保护心脏功能。心肌缺血和缺氧导致心肌细胞损伤后胞浆内[Ca2+]i (钙超载)显著增加[26],在心肌细胞中,Ca2+主要储存在线粒体中。Ca2+作为第二信使可激活多种生物酶,在心脏兴奋–收缩偶联中起关键作用[27]。HSYA对血管系统产生多种影响,通过激活BKCa降低了由MI/RI诱导增加的LTCC亚基的表达[28],LTCC是心肌中主要的电压依赖性钙通道,参与心肌细胞动作电位平台期的形成和维持。降低胞内Ca2+会使得血管舒张,增加心肌供血,抑制血小板聚集,降低血栓形成的风险,减少冠状动脉阻塞的发生几率[29]。HSYA抑制npcm中hr诱导的钙超载。通过分析钙荧光来检测HSYA对hr诱导的细胞内钙过载的影响。HR组的钙荧光水平明显高于对照组,但经HSYA治疗后,钙调节失调呈剂量依赖性的减弱(图2) [30]。HSYA还可以通过调节大鼠的钙稳态来改善糖尿病性心功能不全。为其临床应用于脑缺血疾病的治疗提供了有力的实验依据[31] [32]。HSYA能有效改善冠心病患者的心肌缺血状况,缓解心绞痛症状。

(a)

(b) (c)

(d)

Figure 2. Effect of HSYA on calcium overload in hr-induced npcms. NPCMs were pre-incubated with HSYA (2.5, 5, and 10μm) and nifedipine (100 μm) for 24 hours, followed by hypoxia (6 hours) and reoxygenation (24 hours) (a, b) Representative images and analysis results of calcium fluorescence staining (scale bar, 200 μm). (c, d) Representative immunoblot and quantitative analysis (Data are presented as mean ± standard deviation. P < 0.001 compared with the control group; ∗P < 0.05 vs. HR group, ∗∗P < 0.01 vs. and ∗∗∗P < 0.001 vs)

2. HSYA对hr诱导的npcm中钙超载的影响。NPCMs分别与HSYA (2.5、5和10 μm)和尼索地平(100 μm)预孵育24小时,然后进行缺氧(6小时)和复氧(24小时) (a、b)钙荧光染色的代表性图像和分析结果(比例条,200 μm). (c,d)具有代表性的免疫印迹和定量分析(数据用平均 ± 标准差表示。P < 0.001与对照组相比;∗P < 0.05 vs,∗∗P < 0.01 vs,和∗∗∗P < 0.001 vs)

3. 药物吸收代谢

3.1. HSYA的吸收机制

羟基红花黄色素A在胃肠道的吸收过程涉及复杂的吸收机制受剂型,肠胃环境的影响,HSYA是水溶性大分子化合物,不易通过皮肤吸收[33]。胃肠道吸收是被动扩散机制,包括经细胞途径和细胞旁路途径两种方式。2023年董冬云等人探究了了HSYA跨Caco-2细胞单层的双向转运。实验在37℃下进行,HSYA在AP→BL和BL→AP方向的累积转运量随时间(20、40、60和80 min)和浓度(200、300和400 μg/mL)逐渐增加,但HSYA转运未接近完全饱和(图3)。HSYA的细胞摄取量也随着时间(0.5、1、2和3小时)和浓度(100、200、300和400 μg/mL)的增加而增加(图4)。这些结果表明,HSYA的吸收与时间和浓度有关,被动扩散穿透小肠上皮[34] [35]

Figure 3. Cumulative transport amounts of HSYA at different concentrations (200, 300, and 400 μg/mL) in Caco-2 monolayers in the AP→BL (A) and BL→AP (B) directions (Data are presented as mean ± SD, n = 3)

3. 不同浓度(200、300和400 μg/mL)的HSYA在Caco-2单层中的累积转运量:AP→BL (A)和BL→AP (B)方向(数据表示为SD ± 平均值,n = 3)

Figure 4. The effect of time (A) and concentration (B) on the uptake of HSYA by Caco-2 cells (Data are presented as mean ± SD, n = 3)

4. 时间(A)、浓度(B)对Caco-2细胞中HSYA细胞摄取量的影响(数据表示为SD ± 平均值,n = 3)

在胃部吸收量不高,受胃部PH值偏小的影响,在肠道中吸收会提高吸收量[36] [37]。排泄以肾脏,胆汁、粪便、肺呼出等途径协同作用。肾脏排泄是HSYA静脉注射大鼠和狗后的主要消除途径[38] [39]。其体内代谢途径包括羟基化、羟基化 + 甲基化、乙酰化和葡萄糖醛酸化,也有脱水、氢化、水合和羟基化 + 葡萄糖醛酸化[40] [41]

3.2. 提高HSYA的生物利用度

HSYA属于水溶性黄酮化合物,因为其极性强,膜通透性差,使得其生物利用度不高,利用双乳化给药系统(SDEDDS)可以提高HSYA的吸收[42]。李毅等人测定HSYA的生物样品,包括血浆和组织,结果显示HSYA脂质制剂能够明显降低HSYA及其II相代谢产物从胆汁的排泄量。虽然脂质制剂可能不会改变HSYA的代谢机制,但是显著性降低了HSYA从粪便和胆汁的排泄量,提高了其生物利用度[43]-[45]。通片剂崩解后药物颗粒较大,溶解速率相对较慢,导致吸收延迟[46]。HSYA可以通过库仑吸引力与壳聚糖(CS)结合并形成HSYA-CS复合物。优化制备工艺,结合率达到99.4% [47]

2022年鲍丹丹等人使用外翻肠囊研究SNAC-HSYA-EPO和HSYA的体外肠道吸收特性(表1)。在十二指肠中,SNAC-HSYA-EPO的表观通透性系数为(6.1 ± 1.3) × 10−7),远高于HSYA (2.1 ± 0.1) × 10−7)。在空肠和回肠中也观察到类似的结果。这些发现可能是因为:(1) 部分游离的SNAC改变了细胞膜的流动性,从而促进了HSYA的吸收(2) SNAC-HSYA-EPO和复合材料中辅助材料EPO的亲脂性增加,延长了复合材料在肠道中的滞留。(3) SNAC-HSYA-EPO改变了HSYA吸收方法,从而促进了药物在小肠中的吸收[48]

Table 1. Experimental results of in vitro intestinal absorption (n = 3)

1. 体外肠吸收实验结果(n = 3)

In vitro Papp

Group

Duodenum

Jejunum

Ileum

HSYA

(2.1 ± 0.1) × 10−7

(4.0 ± 0.6) × 10−7

(2.8 ± 0.3) × 10−7

SNAC-HSYA-EPO

(6.1 ± 1.3) × 10−7**

(9.3 ± 0.5) × 10−7**

(10.8 ± 2.2) × 10−7**

**P < 0.01 vs HSYA.

4. 结果与讨论

羟基红花黄色素A对心肌缺血性心脏病是十分有前途的药物,有望填补现有治疗手段的不足,但口服吸收效果不理想,而提高HYSA的生物利用度可以通过(1) 添加吸收促进剂和降低HSYA的极性能使得跨膜能力增强;(2) 增加HSYA的肠道滞留时间从而提高其吸收量;(3) 通过添加辅料,能有效抑制P-gp外排效应[49]等方法,从而使得天然产物HYSA更有效地应用在医药领域。

参考文献

[1] Yue, S., Tang, Y., Li, S. and Duan, J. (2013) Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius. Molecules, 18, 15220-15254.
https://doi.org/10.3390/molecules181215220
[2] 刘宁, 刘媛, 潘蕾, 等. 红花的研究进展[J]. 中国医药导刊, 2017, 19(5): 527-530.
[3] Zhu, H., Wang, Z., Ma, C., et al. (2003) Neuroprotective Effects of Hydroxysafflor Yellow A: In Vivo and in Vitro Studies. Planta Medica, 69, 429-433.
https://doi.org/10.1055/s-2003-39714
[4] Yang, H., Nassif, M., Khairy, P., de Groot, J.R., Roos, Y., de Winter, R.J., et al. (2018) Cardiac Diagnostic Work-Up of Ischaemic Stroke. European Heart Journal, 39, 1851-1860.
https://doi.org/10.1093/eurheartj/ehy043
[5] 李娅兰, 白皓天, 梁霄, 等. 红花中抗氧化活性成分及其作用机制的研究进展[J]. 现代药物与临床, 2022, 37(8): 1879-1885.
[6] Bai, X., Wang, W., Fu, R., Yue, S., Gao, H., Chen, Y., et al. (2020) Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Frontiers in Pharmacology, 11, Article No. 01265.
https://doi.org/10.3389/fphar.2020.01265
[7] Han, D., Wei, J., Zhang, R., Ma, W., Shen, C., Feng, Y., et al. (2016) Hydroxysafflor Yellow A Alleviates Myocardial Ischemia/Reperfusion in Hyperlipidemic Animals through the Suppression of TLR4 Signaling. Scientific Reports, 6, Article No. 35319.
https://doi.org/10.1038/srep35319
[8] Sun, Y., Yang, X., Xu, L., Jia, M., Zhang, L., Li, P., et al. (2023) The Role of Nrf2 in Relieving Cerebral Ischemia-Reperfusion Injury. Current Neuropharmacology, 21, 1405-1420.
https://doi.org/10.2174/1570159x21666221129100308
[9] Zhao, F., Wang, P., Jiao, Y., Zhang, X., Chen, D. and Xu, H. (2020) Hydroxysafflor Yellow A: A Systematical Review on Botanical Resources, Physicochemical Properties, Drug Delivery System, Pharmacokinetics, and Pharmacological Effects. Frontiers in Pharmacology, 11, Article ID: 579332.
https://doi.org/10.3389/fphar.2020.579332
[10] Bacchetti, T., Morresi, C., Bellachioma, L. and Ferretti, G. (2020) Antioxidant and Pro-Oxidant Properties of Carthamus tinctorius, Hydroxy Safflor Yellow A, and Safflor Yellow A. Antioxidants, 9, Article No. 119.
https://doi.org/10.3390/antiox9020119
[11] Wei, X., Liu, H., Sun, X., et al. (2005) Hydroxysafflor Yellow A Protects Rat Brains against Ischemia-Reperfusion Injury by Antioxidant Action. Neuroscience Letters, 386, 58-62.
[12] Zou, J., Wang, N., Liu, M., Bai, Y., Wang, H., Liu, K., et al. (2018) Nucleolin Mediated Pro‐Angiogenic Role of Hydroxysafflor Yellow A in Ischaemic Cardiac Dysfunction: Post‐Transcriptional Regulation of Vegf‐A and Mmp‐9. Journal of Cellular and Molecular Medicine, 22, 2692-2705.
https://doi.org/10.1111/jcmm.13552
[13] Algoet, M., Janssens, S., Himmelreich, U., Gsell, W., Pusovnik, M., Van den Eynde, J., et al. (2023) Myocardial Ischemia-Reperfusion Injury and the Influence of Inflammation. Trends in Cardiovascular Medicine, 33, 357-366.
https://doi.org/10.1016/j.tcm.2022.02.005
[14] Feng, J., Guo, J., Yan, J., Zhang, X., Qu, H., Yang, T., et al. (2023) Luhong Formula and Hydroxysafflor Yellow A Protect Cardiomyocytes by Inhibiting Autophagy. Phytomedicine, 110, Article ID: 154636.
https://doi.org/10.1016/j.phymed.2022.154636
[15] Zhou, D., Ding, T., Ni, B., Jing, Y. and Liu, S. (2019) Hydroxysafflor Yellow A Mitigated Myocardial Ischemia/Reperfusion Injury by Inhibiting the Activation of the JAK2/STAT1 Pathway. International Journal of Molecular Medicine, 44, 405-416.
https://doi.org/10.3892/ijmm.2019.4230
[16] Ye, J., Lu, S., Wang, M., Ge, W., Liu, H., Qi, Y., et al. (2020) Hydroxysafflor Yellow A Protects against Myocardial Ischemia/Reperfusion Injury via Suppressing NLRP3 Inflammasome and Activating Autophagy. Frontiers in Pharmacology, 11, Article No. 1170.
https://doi.org/10.3389/fphar.2020.01170
[17] Liu, D., Mei, W., Zhou, Y. and Xi, H. (2024) Targeting TRPM Channels for Cerebral Ischemia-Reperfusion Injury. Trends in Pharmacological Sciences, 45, 862-867.
https://doi.org/10.1016/j.tips.2024.06.005
[18] Huber, G., Priest, S. and Geisbuhler, T. (2017) Cardioprotective Effect of Hydroxysafflor Yellow A via the Cardiac Permeability Transition Pore. Planta Medica, 84, 507-518.
https://doi.org/10.1055/s-0043-122501
[19] Jiang, M., Zhou, L., Xu, N. and An, Q. (2019) Hydroxysafflor Yellow A Inhibited Lipopolysaccharide‐Induced Non‐small Cell Lung Cancer Cell Proliferation, Migration, and Invasion by Suppressing the PI3K/AKT/mTOR and ERK/MAPK Signaling Pathways. Thoracic Cancer, 10, 1319-1333.
https://doi.org/10.1111/1759-7714.13019
[20] Wang, T., Fu, F., Han, B. and Zhang, L. (2006) Mechanism of Hydroxysafflor Yellow A on Protecting Ischemic Myocardium. Journal of Molecular and Cellular Cardiology, 40, Article No. 957.
https://doi.org/10.1016/j.yjmcc.2006.03.117
[21] Yang, F., Li, J., Zhu, J., Wang, D., Chen, S. and Bai, X. (2015) Hydroxysafflor Yellow A Inhibits Angiogenesis of Hepatocellular Carcinoma via Blocking ERK/MAPK and NF-κB Signaling Pathway in H22 Tumor-Bearing Mice. European Journal of Pharmacology, 754, 105-114.
https://doi.org/10.1016/j.ejphar.2015.02.015
[22] Lin, H.H., Chen, Y.H., Yet, S.F. and Chau, L.Y. (2009) After Vascular Injury, Heme Oxygenase-1/Carbon Monoxide Enhances Re-Endothelialization via Promoting Mobilization of Circulating Endothelial Progenitor Cells. Journal of Thrombosis and Haemostasis, 7, 1401-1408.
https://doi.org/10.1111/j.1538-7836.2009.03478.x
[23] Lakkisto, P., Kytö, V., Forsten, H., Siren, J., Segersvärd, H., Voipio-Pulkki, L., et al. (2010) Heme Oxygenase-1 and Carbon Monoxide Promote Neovascularization after Myocardial Infarction by Modulating the Expression of HIF-1α, SDF-1α and VEGF-B. European Journal of Pharmacology, 635, 156-164.
https://doi.org/10.1016/j.ejphar.2010.02.050
[24] Wei, G., Yin, Y., Duan, J., Guo, C., Zhu, Y., Wang, Y., et al. (2017) Hydroxysafflor Yellow A Promotes Neovascularization and Cardiac Function Recovery through HO-1/VEGF-A/SDF-1α Cascade. Biomedicine & Pharmacotherapy, 88, 409-420.
https://doi.org/10.1016/j.biopha.2017.01.074
[25] 贺熙, 毕学苑, 王皓, 等. 心血管缺血再灌注损伤钙调控的研究进展[J]. 生理学报, 2012, 64(3): 321-326.
[26] Striessnig, J., Bolz, H.J. and Koschak, A. (2010) Channelopathies in Cav1.1, Cav1.3, and Cav1.4 Voltage-Gated L-Type Ca2+ Channels. Pflügers ArchivEuropean Journal of Physiology, 460, 361-374.
https://doi.org/10.1007/s00424-010-0800-x
[27] Wang, N., He, D., Zhou, Y., Wen, J., Liu, X., Li, P., et al. (2020) Hydroxysafflor Yellow A Actives BKCa Channels and Inhibits L-Type Ca Channels to Induce Vascular Relaxation. European Journal of Pharmacology, 870, Article ID: 172873.
https://doi.org/10.1016/j.ejphar.2019.172873
[28] 闫月峰, 王海芳, 何锐, 等. 红花黄色素注射液辅助治疗冠心病心绞痛疗效的Meta分析[J]. 云南中医学院学报, 2021, 44(5): 25-33.
[29] Ye, J., Wang, R., Wang, M., Fu, J., Zhang, Q., Sun, G., et al. (2021) Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6643615.
https://doi.org/10.1155/2021/6643615
[30] Sun, Y., et al. (2023) Hydroxysafflor Yellow A—An Important Natural Pigment for Treating Metabolic Diseases. Food Reviews International, 39, 3676-3690.
https://doi.org/10.1002/ptr.2885
[31] 张海防, 郭健新, 黄罗生, 等. 羟基红花黄色素A的吸收机制研究[J]. 中国药科大学学报, 2006(4): 312-317.
[32] Zhang, Q., Peng, J.-H. and Zhang, X.-N. (2005) A Clinical Study of Safflower Yellow Injection in Treating Coronary Heart Disease Angina Pectoris with Xin-Blood Stagnation Syndrome. Chinese Journal of Integrative Medicine, 11, 222-225.
https://doi.org/10.1007/bf02836509
[33] 曾明辉, 谭正怀, 邱建平, 等. 氮酮对黄硝巴布剂中羟基红花黄色素A体外皮肤渗透性的影响[J]. 实用医院临床杂志, 2016, 13(2): 66-68.
[34] Tang, D., Ye, T., Chen, X., Yang, J. and Xie, Y. (2023) Transepithelial Transport Characteristics of Hydroxysafflor Yellow A across Cellular Monolayers and the Effects of the Influx and Efflux Transporters. Food Bioscience, 55, Article ID: 103037.
https://doi.org/10.1016/j.fbio.2023.103037
[35] Tian, X., Yang, X., Yang, X. and Wang, K. (2009) Studies of Intestinal Permeability of 36 Flavonoids Using Caco-2 Cell Monolayer Model. International Journal of Pharmaceutics, 367, 58-64.
https://doi.org/10.1016/j.ijpharm.2008.09.023
[36] Liu, J., Yue, S., Yang, Z., Feng, W., Meng, X., Wang, A., et al. (2018) Oral Hydroxysafflor Yellow A Reduces Obesity in Mice by Modulating the Gut Microbiota and Serum Metabolism. Pharmacological Research, 134, 40-50.
https://doi.org/10.1016/j.phrs.2018.05.012
[37] Bouter, K.E., van Raalte, D.H., Groen, A.K. and Nieuwdorp, M. (2017) Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology, 152, 1671-1678.
https://doi.org/10.1053/j.gastro.2016.12.048
[38] Chu, D., Liu, W., Huang, Z., Liu, S., Fu, X. and Liu, K. (2006) Pharmacokinetics and Excretion of Hydroxysafflor Yellow A, a Potent Neuroprotective Agent from Safflower, in Rats and Dogs. Planta Medica, 72, 418-423.
https://doi.org/10.1055/s-2005-916249
[39] Jin, Y., Wu, L., Tang, Y., Cao, Y., Li, S., Shen, J., et al. (2016) UFLC-Q-TOF/MS Based Screening and Identification of the Metabolites in Plasma, Bile, Urine and Feces of Normal and Blood Stasis Rats after Oral Administration of Hydroxysafflor Yellow A. Journal of Chromatography B, 1012, 124-129.
https://doi.org/10.1016/j.jchromb.2016.01.023
[40] Li, Y., Zhang, Z. and Zhang, J. (2007) Determination of Hydroxysafflor Yellow a in Rat Plasma and Tissues by High‐performance Liquid Chromatography after Oral Administration of Safflower Extract or Safflor Yellow. Biomedical Chromatography, 21, 326-334.
https://doi.org/10.1002/bmc.769
[41] Guo, X., Zheng, M., Pan, R., Zang, B. and Jin, M. (2018) Hydroxysafflor Yellow A Suppresses Platelet Activating Factor-Induced Activation of Human Small Airway Epithelial Cells. Frontiers in Pharmacology, 9, Article No. 859.
https://doi.org/10.3389/fphar.2018.00859
[42] Li, J., Sun, M., Ping, Q., Chen, X., Qi, J. and Han, D. (2010) Metabolism, Excretion and Bioavailability of Hydroxysafflor Yellow A after Oral Administration of Its Lipid-Based Formulation and Aqueous Solution in Rats. Chinese Journal of Natural Medicines, 8, 233-240.
https://doi.org/10.3724/sp.j.1009.2010.00223
[43] Lv, L.Z., Tong, C.Q., Lv, Q., et al. (2012) Enhanced Absorption of Hydroxysafflor Yellow A Using a Self-Double-Emulsifying Drug Delivery System: In Vitro and in Vivo Studies. International Journal of Nanomedicine, 7, 4099-4107.
https://doi.org/10.2147/ijn.s33398
[44] Wen, A., Yang, J., Jia, Y., Yang, Z., Tian, Y., Wu, Y., et al. (2008) A Rapid and Sensitive Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) Method for the Determination of Hydroxysafflor Yellow a in Human Plasma: Application to a Pharmacokinetic Study. Journal of Chromatography B, 876, 41-46.
https://doi.org/10.1016/j.jchromb.2008.10.007
[45] Liu, S., Chen, H., Zhou, F., Tiwari, S., Zhuang, K., Shan, Y., et al. (2024) Preparation, Characterization and Evaluation of Nintedanib Amorphous Solid Dispersions with Enhanced Oral Bioavailability. AAPS PharmSciTech, 25, 183.
https://doi.org/10.1208/s12249-024-02902-x
[46] 热比古力·阿力木, 闫珍, 尹聪, 等. 羟基红花黄色素A体外消化特性与体内代谢规律研究[J]. 食品安全质量检测学报, 2023, 14(8): 10-18.
[47] Ma, G., Yu, F., Wang, S., Li, Z., Xie, X. and Mei, X. (2014) A Novel Oral Preparation of Hydroxysafflor Yellow A Base on a Chitosan Complex: A Strategy to Enhance the Oral Bioavailability. AAPS PharmSciTech, 16, 675-682.
https://doi.org/10.1208/s12249-014-0255-z
[48] Bao, D., Xie, X., Cheng, M., Zhang, K., Yue, T., Liu, A., et al. (2022) Hydroxy-Safflower Yellow A Composites: An Effective Strategy to Enhance Anti-Myocardial Ischemia by Improving Intestinal Permeability. International Journal of Pharmaceutics, 623, Article ID: 121918.
https://doi.org/10.1016/j.ijpharm.2022.121918
[49] 马冠男, 喻芳邻, 张慧, 等. 羟基红花黄色素A的药代动力学及生物药剂学研究进展[J]. 国际药学研究杂志, 2014, 41(2): 195-199+220.

Baidu
map