AKR1C3与疾病的关系
The Relationship between AKR1C3 and Diseases
DOI: 10.12677/hjmce.2025.131008, PDF, HTML, XML,   
作者: 袁大中, 宋冰茹*:浙江师范大学化学与材料科学学院,浙江 金华
关键词: AKR1C3癌症抑制剂治疗耐药AKR1C3 Cancer Inhibitors Therapeutic Resistance
摘要: 醛酮还原酶家族1成员C3 (AKR1C3),也被称为5型17 β羟基类固醇脱氢酶(17 β-HSD5)或前列腺素F (PGF)合成酶,在雄激素生物合成中起关键作用。它催化弱雄激素、雌酮(弱雌激素)和PGD2分别转化为强雄激素(睾酮和5 α-二氢睾酮)、17 β-雌二醇(强雌激素)和11 β-PGF2 α。AKR1C3水平升高激活雄激素受体(AR) 8信号通路,促进肿瘤复发和对癌症治疗产生耐药性。AKR1C3的过表达作为一种致癌因子,促进癌细胞的增殖、侵袭和转移,并与癌症患者的不良预后和总生存期相关。抑制AKR1C3已被证明在抑制肿瘤进展和克服治疗耐药性方面具有强大的功效。因此,AKR1C3抑制剂的开发和设计引起了研究人员越来越多的兴趣,近年来取得了重大进展。本文简要介绍了AKR1C3的生理和病理功能,并对近年来选择性AKR1C3抑制剂的研究进展进行了综述。我们的目的是为未来的药物发现和潜在的治疗前景提供参考,新的、有效的、选择性的AKR1C3抑制剂。
Abstract: Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17 β-hydroxysteroid dehydrogenase (17 β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5 α-dihydrotestosterone), 17 β-estradiol (a potent estrogen), and 11 β-PGF2 α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Here, we briefly review the physiological and pathological function of AKR1C3 and then summarize the recent development of selective AKR1C3 inhibitors. We aim to provide a reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective AKR1C3 inhibitors.
文章引用:袁大中, 宋冰茹. AKR1C3与疾病的关系[J]. 药物化学, 2025, 13(1): 70-85. https://doi.org/10.12677/hjmce.2025.131008

1. 前言

AKR1C是醛酮还原酶(AKR)家族的一个亚家族,AKR1C家族主要有4个亚型,分别是AKR1C1、AKR1C2、AKR1C3和AKR1C4。依赖于烟酰胺腺嘌呤二核苷酸磷酸(NADPH)在3-酮、17-酮和20-酮类固醇还原中发挥重要作用[1],这些酶可以使用多种底物,包括内源性类固醇、前列腺素和外源性化合物。同时AKR1C酶还参与氧化还原反应[2],通过对NADPH表现出更高的亲和力,AKR1C3主要在体内发挥其还原活性[3]

AKR1C3与AKR1C1、AKR1C2和AKR1C4的序列同源性较高,大约在86%,4种酶的结构非常相似,但他们分别表现出了不同的分布偏好和生物学功能。AKR1C1和AKR1C2在各种组织类型中都有广泛表达;AKR1C3主要表达于内分泌器官[4] (前列腺、肾上腺、乳腺和子宫),参与肾上腺和肿瘤中类固醇的生物合成,AKR1C4则特异于肝脏,参与胆酸的合成[5]

Figure 1. The basic steps of androgen biosynthesis and the role of AKR1C3 in its regular path (green), alternative path (yellow), backdoor path (purple)

1. 雄激素生物合成的基本步骤以及AKR1C3在其中的作用常规路径(绿色),替代路径(黄色),后门路径(紫色)

所有的AKR1C酶都可以作为NADPH依赖性的3-、17-和20-酮类固醇还原酶,但它们主要的催化还原底物有所不同。AKR1C1主要促进孕酮的失活[3],主要作为20-酮类固醇还原酶,AKR1C2促进雄激素5α-二氢睾酮的失活,主要作为3-酮类固醇还原酶。AKR1C4对5α/5β四氢类固醇的形成有最稳定的催化效率。AKR1C3 [也称为(17β-HSD5)]主要作为17-酮还原酶,将Δ4雄烯-3,17-二酮和5α-雄烯-3,17-二酮分别转化为睾酮和5α-二氢睾酮(图1)。睾酮和5α-二氢睾酮都是强效雄激素,对雄激素受体具有很强的亲和力[6]

2. AKR1C3在疾病中的作用

2.1. 前列腺癌

前列腺癌(PCa)是男性死亡率排名第二高的癌症[7],在所有癌症死亡相关病例中,约有1/10是它造成的[8],前列腺癌主要依赖于雄激素,通过化学或者手术阉割实现对于雄激素的剥夺的这种疗法被称为雄激素剥夺疗法(ADT),是晚期前列腺癌的主要治疗方法[9]。然而,在经过雄激素剥夺疗法治疗的一段时间后,有部分患者转变成了更严重的转移性去势抵抗性前列腺癌(CRPC) [10]。CRPC的主要特征有,雄激素合成酶的表达增加,雄激素受体剪切变异体的形成等分子层面的变化[11]。这种变化导致肿瘤内雄激素的生物合成增加,从而导致疾病的进一步发展[12] [13]。CRPC是一种致死性和转移性的表现,它可能受到AKR1C3过表达的影响。因此,抑制AKR1C3成为治疗CRPC的一种具有前景的策略。CRPC进展的主要机制涉及癌细胞利用血液中的雄激素前体或通过上调类固醇生成酶(包括Cyp17A1、AKR1C3和5α-还原酶)重新合成睾酮[14]

根据GEO数据集和Oncomine的数据,AKR1C3水平在原发性前列腺癌和正常前列腺癌中是正常的,但在转移性前列腺癌中显著升高[15]。此外,AKR1C3被发现与人前列腺癌细胞的转移状态有关,这表明它在癌细胞增殖、迁移和对恩杂鲁胺的耐药性中可能发挥作用[16]

AKR1C3通过多种机制和途径影响前列腺癌细胞的生长和增殖。它催化PGD2转化为11βPGF2α,产生促进前列腺细胞生长的增殖信号。研究表明,AKR1C2和AKR1C3介导类似的PGD2转化,通过FP和PI3K/Akt信号通路促进前列腺细胞增殖[17]。此外,AKR1C3被鉴定为AR选择性共激活因子,在PCa细胞、异种移植物和人类CRPC样品中与AR相互作用。这种相互作用促进了雄激素依赖性PCa和CRPC异种移植物的生长,同时伴有雄激素信号的再激活[4]。研究发现,AKR1C3和AR-V7形成的复合物对ADT处理后的CRPC细胞生长至关重要,抑制了这两种蛋白的降解[18]

此外,HEXIM1被认为是一个调节因子,下调AKR1C3在乳腺和PCa细胞中的表达,影响激素产生、基因表达和细胞增殖[19]。AKR1C3作为Siah2的下游效应物,在体外和体内独立于其催化活性驱动PCa生长。Siah2抑制降低了AKR1C3的表达,降低了细胞内雄激素水平,抑制了细胞生长,而Siah2敲除细胞中AKR1C3的重新表达提高了Siah2蛋白水平。令人惊讶的是,AKR1C3的活性并没有抑制Siah2对其他靶标的降解功能[20]。另一项研究表明,在CRPC细胞中,SULT2B (一种前列腺表达的羟基类固醇硫转移酶)的缺失,上调AKR1C3,激活ERK1/2存活信号,并引起类似EMT的变化[21],这表明,调节抑制SULT2B-AKR1C3轴的途径可能为靶向sult2b缺陷PCa提供了新的途径。AKR1C3通过调节转录因子和信号通路促进EMT,使肿瘤细胞获得像间充质细胞这样更具侵袭性和转移性的特征[22]。除了参与细胞增殖和EMT,AKR1C3还参与血管生成。生物信息学分析和功能基因组学表明,AKR1C3通过上调胰岛素样生长因子(IGF)-1、Akt和血管内皮生长因子(VEGF)的表达水平,促进了PCa细胞的血管生成和侵袭性[23]

非常值得注意的是,在前列腺中,AKR1C2和AKR1C3在对5α-二氢睾酮活化中具有完全相反的催化功能。AKR1C3促进5α-二氢睾酮的生成,而AKR1C2抑制5α-二氢睾酮的生成。如果抑制AKR1C2的活性,则会促进前列腺增殖信号的传导[24]

2.2. 乳腺癌

AKR1C3似乎在激素依赖性乳腺癌和潜在的激素非依赖性乳腺癌的发展中有着至关重要的作用。它与前列腺素的减少有关,前列腺素可能产生不依赖激素的增殖信号[25]。AKR1C3催化的17-和20-酮类固醇的减少可能会提高乳腺中17β-雌二醇与孕酮的比例,潜在的增加雌激素受体(ER) α和降低孕酮受体(PR)信号,尽管这一设想需要进一步研究。此外,AKR1C3形成PGF2差向异构体可以激活F前列腺素受体,损害PPARγ的抗增殖PGJ2配体。因此,AKR1C3成为增殖信号的来源,并成为激素依赖性乳腺癌和非激素依赖性乳腺癌的潜在治疗靶点[25]

在免疫组织化学分析中,FP受体状态仅与AKR1C3阳性病例的不良临床结果相关。用11β-PGF2α磷酸化ERK和CREB治疗,通过激活MCFFP受体诱导MCFFP细胞中Slug的表达。与亲本对照组相比,这些细胞的化学敏感性降低[26],这些发现表明,AKR1C3的作用可以产生FP受体配体,激活促进乳腺癌癌细胞存活的途径。

在一项分析癌症患者中AKR1C3 mRNA表达的报告中显示,在CRPC患者中,AKR1C3表达上调,而ER阳性乳腺癌中表达下调[27]。此外,有报道指出,与正常乳腺组织相比,AKR1C3在乳腺癌中的表达下调[28]

2.3. 肝癌

原发性肝癌主要包括肝细胞癌(HCC)和胆管细胞癌,由于其预后差,转移率和复发率都较高,给临床带来了重大挑战。通过Oncomine、CCLE和GEPIA数据库的分析发现,AKR1C3在肝癌组织和细胞中的表达水平均显著升高[29]

AKR1C3和AKR1D1参与MAPK/ERK和AR信号通路。研究表明,AKR1C3降低或AKR1D1过表达,会导致AR水平降低和ERK1/2磷酸化,从而抑制细胞增殖和肿瘤生长[30]。这表明AKR1C3通过调节MEK/ERK和AR信号通路在HCC进展中具有潜在的致癌作用。此外,AKR1C3通过诱导TRAF6的自身泛素化来调节和激活NF-κB,随后释放促炎因子,增强STAT3磷酸化,促进肿瘤细胞增殖和侵袭。此外,AKR1C3通过IL-6/STAT3通路促进肿瘤增殖和侵袭,如实验所证明的那样,通过将STAT3直接结合到AKR1C3启动子上,建立了一个正向调节反馈回路[31]

NRF2/MAFG-AKR1C3-PARP1轴也是HCC中与增殖相关的重要途径。NRF2/MAFG直接结合AKR1C3启动子,激活转录。AKR1C3通过降低PARP1的泛素化来稳定PARP1,促进HCC细胞增殖和对顺铂的低敏感性[32]。AKR1C3有助于HCC中脂滴(LD)的积累,这是一种与各种肿瘤类型的癌症转移、干细胞增殖和化疗耐药相关的现象[33]。此外,AKR1C3在HCC中通过YAP/SLC7A11信号通路调控铁下垂。AKR1C3下调导致YAP核易位减少,抑制胱氨酸转运蛋白SLC7A11,从而增加细胞内亚铁水平,促进铁凋亡[34]。AKR1C3和SLC7A11的联合被认为是HCC预后不良的有效预测因子,强调了这些分子相互作用的临床相关性[34]。这项综合分析阐明了AKR1C3在非激素依赖型肝癌中的复杂作用,为治疗干预和预后评估提供了潜在途径。

2.4. 急性髓系白血病

急性白血病(AL)主要包括两种亚型:急性淋巴细胞白血病(ALL)和急性髓系白血病(AML)。AML是一种由造血干细胞引起的血液系统恶性肿瘤,其特征是骨髓和周边血液中原始髓细胞的异常增殖[35] [36]。AML中AKR1C3的表达与标准诱导疗法的疗效有关,特别是在AKR1C3代谢蒽环类药物的情况下[37]

尽管与非白血病或健康组织相比,AKR1C3在白血病中没有过表达,但与其他白血病亚型(包括AML和B细胞急性淋巴母细胞白血病(B-ALL))相比,在T细胞急性淋巴母细胞白血病(T-ALL)中,AKR1C3的表达增加[37]。白血病干细胞(LSC)标志物,包括AKR1C3、CD34和MMRN1,在TCGA的高T细胞免疫球蛋白粘蛋白-3 (Tim-3)组中被发现上调。LSC中Tim-3的表达与AML的不良预后和独特的生物学特征有关[38]

AKR1C3在白血病中作为PGF2合成酶,促进细胞增殖并阻碍髓细胞分化。在AKR1C3的影响下,PGD2被催化成11β-PGF2α,通过MAPK信号通路阻断髓细胞分化,促进细胞增殖。在缺乏AKR1C3的情况下,PGD2转化为PGJ2或15-脱氧-Δ-PGJ2,这是PPARγ的假设配体,通过激活PPARγ促进分化和凋亡[3] [39] [40]

涉及特异性AKR1C3前药的临床前研究,如AST-006 (TH-3424),已经在体外和体内证明了AKR1C3过表达的T-ALL细胞的细胞毒性和抗肿瘤活性[41] [42]。此外,由AKR1C3激活的前药如PR104A和OBI-3424在T-ALL的临床前模型中表现出疗效。OBI-3424的临床潜力目前正在HCC或CRPC患者的1/2期临床试验中进行评估[43] [44]。此外,PR-104已被证明可以迅速减少骨髓中所有AKR1C3高表达的细胞,使其成为以AKR1C3过表达和缺氧为特征的T-ALL患者的一种令人信服的治疗策略[45]。AKR1C3作为一种生物标志物,表明T-ALL在体内和体外对PR-104/PR-104A的敏感性。

2.5. 胃肠癌

胃肠道肿瘤是一种常见且重要的恶性肿瘤,包括胃癌、结肠癌和直肠癌。类固醇激素在胃癌发生中起着至关重要的作用,在男性和女性的周边组织中都有大量的产生。在Frycz及其同事领导的一项研究中,在非肿瘤和原发性肿瘤胃组织中AKR1C3转录物和蛋白质水平的测定揭示了与胃癌(GC)的临床病理特征的相关性。组蛋白去乙酰化酶抑制剂丁酸钠(NaBu)被发现可以提高胃癌细胞系(EPG 85-257和HGC-27)中AKR1C3转录物和蛋白水平,提示AKR1C3表达的降低可能参与了胃癌的发育,并可通过NaBu恢复[46]

虽然AKR1C3在各种癌症类型中普遍表达上调,但与正常组织相比,它在结肠癌组织中被发现表达下调。一项研究发现ARID3A是AKR1C3的转录因子,抑制其在结肠癌细胞中的表达。AKR1C3和ARID3A之间的相互作用与结肠癌细胞对5-氟尿嘧啶(5-FU)的化学敏感性降低有关,这表明ARID3A与AKR1C3的比例可能作为预测结肠癌患者预后的有价值的标志物[47]

3. AKR1C3与治疗耐药

3.1. 内分泌治疗耐药

内分泌治疗是癌症治疗的一种重要方法,它使用类固醇药物来改变肿瘤发展所需的条件,从而抑制肿瘤的进展。与化学疗法不同,内分泌疗法提供精确的治疗效果,毒性最小,使用方便。

在前列腺癌治疗的背景下,内分泌治疗包括睾丸切除术和抗雄激素药物,如比卡鲁胺和恩杂鲁胺。然而,对恩杂鲁胺和醋酸阿比特龙等强效抗雄激素药物的耐药性对晚期前列腺癌治疗构成了巨大的挑战[48]。AKR1C3已被确定为内分泌耐药的关键参与者,特别是在恩杂鲁胺耐药的背景下。研究表明,AKR1C3在恩杂鲁胺耐药前列腺癌细胞中过表达,有助于疾病进展和对恩杂鲁胺的耐药。靶向内分泌雄激素和AKR1C3已被提出作为克服恩杂鲁胺耐药和提高晚期前列腺癌患者生存率的策略[15]。此外,AKR1C3/AR-V7轴与交叉耐药有关,其中对恩杂鲁胺和阿比特龙耐药的前列腺癌细胞进一步对阿帕鲁胺和达罗鲁胺耐药。研究表明,降低AR-V7或靶向AKR1C3可使耐药细胞对这些药物重新敏感,为解决耐药问题提供了潜在途径[49]

在乳腺癌中,AKR1C1,AKR1C2和AKR1C3被发现在他莫昔芬耐药的乳腺癌细胞中上调。这种上调与对他莫昔芬的耐药性增加有关,强调了AKR1C家族成员在内分泌治疗耐药中的作用[50]

3.2. 靶向治疗耐药

靶向治疗是一种使用精确识别和攻击恶性肿瘤细胞的药物的治疗策略,与传统治疗相比,提供更集中的治疗效果,副作用更少。这些药物包括小分子抑制剂、单克隆抗体和抗体偶联药物。然而,对靶向治疗的耐药性仍然是一个重大挑战。

在慢性髓性白血病(CML)中,AKR1C3与对伊马替尼(一种酪氨酸激酶抑制剂,用作一线靶向药物)的耐药性有关。AKR1C3的高表达增加了CML细胞和小鼠模型对伊马替尼的耐药性。伊马替尼联合吲哚美辛(AKR1C3的化学抑制剂)可显著延长小鼠的生存期,并减少脾脏肿大,表明AKR1C3抑制具有增强伊马替尼治疗的潜力。

4. 目前已知的AKR1C3抑制剂

4.1. 天然产物类

4.1.1. 肉桂酸衍生物

Figure 2. Baccharin and its representative analogues

2. Baccharin及其代表性类似物

Baccharin是巴西蜂胶中的天然成分,未取代的Baccharin表现出强烈的AKR1C3偏好和抑制效力(IC50 = 110 nM) [51],羧酸部分与SP1相互作用,异戊烯基与SP3相互作用,以及与SP3相互作用的乙酰氧基取代基部分已被证明对AKR1C3的抑制活性和选择性有很大贡献。

KV-37是通过对Baccharin进行结构修饰而得到的,具有几个突出的优点,化合物2对AKR1C2具有较强的抑制活性(IC50 = 66 nM)和显著的选择性(比AKR1C2高109倍),并且具有水解稳定性。2与恩杂鲁胺联合用药具有协同作用,可恢复CRPC细胞系22Rv1细胞和LNCaP细胞对恩杂鲁胺的敏感性[52]

Endo等人设计了一系列不含戊烯基的baccharin类似物[53],结果表明,化合物3和4中异戊烯基分别被4甲基苄基醚和3-氟苯醚取代,具有与baccharin相似的抑制活性。与Baccharin相比,化合物5具有相似的AKR1C3选择性和更好的AKR1C3抑制效能,这是由于化合物5的苯醚部分的3位羟基与AKR1C3甾体通道中的Tyr24之间形成了氢键。酰胺衍生物6对AKR1C3 [54]。表现出较高的选择性和抑制活性。该化合物与SP2口袋具有疏水相互作用,具有较好的成药性能。6的配体亲脂效率高于前导化合物。

Baccharin具有良好的AKR1C3抑制活性和选择性,但其结构中的酯键代谢不稳定,水解后产物的活性和选择性降低。为了更好地评估baccharin衍生物作为AKR1C3抑制剂治疗AML的协同作用,Verma等人设计并合成了三种具有增强水解稳定性或缩短化合物与靶点之间氢键距离的衍生物[39]。在这三个衍生物(7~9)中,化合物8表现出最高的亚型选择性,而化合物9表现出最强的抑制活性。这三种化合物(7~9)对AKR1C3表现出不同程度的抑制活性(图2)。

4.1.2. 生物碱类

Hulcová等人通过对28种石蒜科生物碱进行活性测试,筛选了一种低微摩尔的AKR1C3抑制剂[55],虽然10 (图3)对AKR1C3并不是特别有效,但由于其存在于广泛的天然来源中,它仍然可以作为进一步开发的有效先导化合物。

另一种生物碱,小檗碱(BBR; 11) [56],分子对接结果表明,BBR与SP3中的Phe306和SP2中的Phe311形成ππ相互作用。有报道表明,BBR具有比吲哚美辛更好的抑制效力(IC50 = 7.26 μM)。这种活性可能是由于BBR通过作为AR拮抗剂和阻断肿瘤内类固醇生成这两种方式抑制细胞增殖,以及与SP2口袋氨基酸残基的额外疏水相互作用。此外,在去势小鼠皮下异种LNCaP细胞模型中,BBR可以延缓潜伏期向CRPC的进展。

近年来,通过[2 + 2 + 2]环三聚化方法合成了一系列具有AKR1C3潜在亲和力的四氢异喹啉化合物[57],与BBR相比,化合物12对AKR1C2的选择性有所提高。对接分析结果显示,12延伸到AKR1C3的SP1和SP3口袋中,在氧阴离子位点形成氢键相互作用。由于SP1空间体积的差异,12不能与AKR1C2的SP1口袋相互作用,这被认为是其高选择性的原因之一。此外,这种便捷的合成方法为后续开发更多潜在的AKR1C3抑制剂提供了新的思路。

Figure 3. Representative alkaloid inhibitors

3. 代表性生物碱抑制剂

4.2. 非常规用途的AKR1C3抑制剂

4.2.1. 嘌呤类似物(CDK抑制剂)

细胞周期蛋白依赖性激酶(CDK)抑制剂Purvalanol A (13)和Roscovitine (14)也能有效抑制AKR1C3活性[58],Ki值分别为1.4 μM和5.5 μM。这两种药物显著抑制过表达AKR1C3的HCT116细胞的DAU代谢。在临床相关条件下,Purvalanol A和Roscovitine与DAU联合使用时表现出协同效应,正在成为克服蒽环类药物耐药的治疗方案。

4.2.2. Dinaciclib (CDK抑制剂)

Novotnáet等人证实了Dinaciclib (15,图4)通过与蒽环类抗生素还原酶相互作用影响蒽环类药物治疗的疗效[59],Dinaciclib不仅对人重组AKR1C3的DAU还原有较强的抑制作用(IC50 = 0.07 μM)。

在细胞水平(HCT116/ AKR1C3细胞,IC50 = 0.23 μM)上也观察到这种效应。此外,Dinaciclib的加入可以增强化疗药物DAU对AKR1C3高表达的HCT细胞的毒性作用。

4.2.3. PI3K抑制剂

PI3K抑制剂Buparisib (16,图4)可以有效抑制AKR1C3,降低其对dau的还原代谢[60]。该化合物逆转了对蒽环类药物的耐药性,维持了其细胞毒性。Buparisib的IC50值为9.5 μM,在转染了编码AKR1C3的质粒的人结直肠癌HCT116细胞中观察到同样程度的抑制(IC50 = 7.9 μM)。

Figure 4. Representative CDK inhibitors

4. 代表性CDK抑制剂

4.2.4. 磺脲类

Figure 5. Representative sulfonylurea inhibitors

5. 代表性的磺脲类抑制剂

有报道展示了一线抗糖尿病药物在促进抗癌开发中的新的药理作用。几种磺脲类药物对AKR1C3有体外抑制作用[61],其中两种药物对AKR1C3有明显的抑制作用。Glimepiride (GLM;图5)是一种有效的体外选择性AKR1C3抑制剂(IC50 = 0.85 ± 0.04 μM),是第三代降糖药。AKR1C3被占据的SP1和SP2位点增强了结合并促进了选择性。另一种中度抑制AKR1C3 (IC50 = 19.62 ± 1.67 μM)的磺脲类药物是第一/二代降糖药gliclazide (GLC;图5)。

4.3. 非甾体抗炎药类似物

非甾体抗炎药及其类似物是一类AKR1C3抑制剂。由于非甾体抗炎药已广泛应用于临床,因此估计其类似物也可能具有良好的耐受性。

4.3.1. 萘普生类似物

萘普生阻断环氧化酶介导的炎症,并且抑制AKR1C3和AKR1C2 [62],Adeniji等人通过修饰萘普生的手性中心和萘环,发现了一种对AKR1C3具有高选择性和抑制活性的化合物20,化合物20 (图6)在R构型中用一个乙基取代了先导化合物的甲基。此外,该化合物不抑制AKR1C2和COX酶。

在20和21与AKR1C2的相互作用中,立体化学特异性很明显。晶体学研究表明,这两种化合物对AKR1C2具有不同的结合模式。AKR1C2的Leu308残基与化合物20在空间上发生冲突,导致对AKR1C2的抑制作用丧失。

Figure 6. Naproxen and its analogues

6. 萘普生及其类似物

4.3.2. 吲哚美辛类似物

吲哚美辛对AKR1C3的抑制作用比AKR1C2强很多[62],有趣的是,吲哚美辛的结合受到pH的影响。当pH = 7.5时,吲哚美辛与其他非甾体抗炎药类似,它将羧酸基锚定在氧阴离子位点。吲哚美辛分子延伸到SP1袋中。当pH = 6时,羧酸与Gln222结合,吲哚美辛分子位于SP3口袋中[63]

Byrns等分析了现有非甾体类抗炎药和AKR1C3的晶体结构数据,合成了N-(4-氯苯甲酰)-褪黑激素[64] (CBM; 23),对AKR1C3具有高选择性。用反酰胺取代羧酸,去除吲哚美辛中2位的甲基,得到CBM,消除了对COX的抑制作用。该化合物有效抑制AKR1C1和AKR1C2。CBM还通过竞争抑制抑制AKR1C3对PQ的还原,而AKR1C3通过非竞争抑制抑制对Δ4-雄烯-3,17-二酮的还原。

然而,CBM的溶解度和生物利用度较差,限制了其临床应用。随后,在已知COX酶SAR的基础上,设计合成了几类吲哚美辛类似物,新设计的化合物对AKR1C3保持选择性,对COX酶抑制活性降低[65]。通过体外活性筛选,i类化合物(24)、ⅱ类化合物(25、26)、ⅲ类化合物(27、28、29)均表现出对AKR1C3的选择性抑制作用。这三类化合物均未显示出对AR激动剂或增强DHT介导的AR信号传导的活性。在CRPC细胞模型中,它们能有效阻断睾酮的产生,抑制细胞的增殖速率,提示它们是潜在的CRPC治疗药物。

Pippione等人利用生物电子等排法得到了吲哚美辛衍生物30和31 (图7),它们不含羧基,用羟基三唑替代了吲哚美辛的羧基,与吲哚美辛相比,具有优越的电子性能和亲脂性。

结直肠癌(HCT 116、HT-29)和PC (LNCaP和VCaP)细胞系的体外肿瘤细胞毒性试验表明,这两种衍生物与吲哚美辛具有生物等效性。此外,两种唑类衍生物的血清学行为和胃肠液行为与吲哚美辛非常相似,两者都表现出高血浆蛋白结合率和在pH = 7时相对于pH = 2的更高溶解度。

Figure 7. Indomethacin and its derivatives

7. 吲哚美辛及其衍生物

4.3.3. 氟芬那酸衍生物

为了提高N-苯基苯甲酸类化合物对AKR1C3的抑制选择性,Adeniji等人以氟芬那酸(FLU)为先导化合物,通过修饰对苯基和n-苯甲酸基团合成了一系列衍生物[65],当羧基位于胺的中间位置,并在N-苯基上引入吸电子取代基时,这类化合物的选择性抑制活性最佳。

其中,化合物32~39对AKR1C3具有纳摩尔效价,对其他AKR1C和COX酶无抑制作用。在代谢研究中,这些化合物阻断LNCaP-AKR1C3细胞中睾酮的产生。此外,它们不抑制流感可作用的两种酶AKR1B1和AKR1B10 (IC50 > 10 μM)。因此,这些化合物是一类潜在的CRPC治疗药物。

Pippione等人利用FLU进行支架跳跃策略,获得了许多对AKR1C3具有高选择性和抑制活性的羟基唑化合物[66] [67] (图8)。这些化合物具有N取代羟基化三唑和酸性羟基苯并异恶唑。

化合物40是FLU的羟基三唑衍生物,对AKR1C和COX酶具有良好的选择性[67]在表达22RV1的AKR1C3的CRPC细胞中,40干扰睾酮的产生并阻碍细胞增殖。此外,40能部分恢复表达AKR1C3的22RV1 CRPC细胞对Abi和ENZ的敏感性。

报道表明,化合物41和42是AKR1C3的高选择性抑制剂[66]。这两种化合物在微摩尔水平上抑制AKR1C3对s-四醇的氧化。值得注意的是,它们对AKR1C2、COX1和COX2也有很高的选择性。除了能够抑制细胞增殖、前列腺特异性抗原(PSA)表达和睾酮产生外,与Abi和ENZ共同给药时,FLU的羟基唑类似物还表现出降低肿瘤细胞存活率的协同作用。

Christine等人首次报道了含有SF5基团的FLU衍生物对AKR1C3的抑制作用[68],用电负性更强的SF5基团取代CF3基团。其中,化合物43中的SF5基团被修饰到亚胺基的间位位置。这两种衍生物均表现出较强的AKR1C3抑制活性和亚型选择性。

Figure 8. Flufenamic acid and its representative analogues

8. 氟芬那酸及其代表性类似物

4.4. 双功能AKR1C3抑制剂

据报道,一些FLU类似物可作为AR拮抗剂[69],这表明AR和AKR1C3配体具有共同的药效团。Penning等人合成了一种“同类首创”的双功能化合物[70] (化合物45) (图9),以化合物45为先导化合物,开发出了有效且高选择性的AKR1C3抑制剂[71] (化合物46和47)化合物45对AKR1C3表现出纳米摩尔的抑制作用,并消除了COX活性。在AR细胞内结合试验中,45作为AR拮抗剂竞争性地取代放射性合成雄激素甲基三烯醇酮([3H]-R1881;IC50 = 8μM)。在AR依赖性报告基因实验中,化合物45抑制AR转激活(IC50 = 21 μM)。

化合物45和其他先进的AKR1C3靶向抑制剂之间进行了比较。ASP9521对雄激素受体无药理作用,GTx-560阻断AKR1C3共激活AR的能力(IC50 = 2.1 μM)远强于其直接作为AR拮抗剂的能力(IC50 = 80 μM)。与这两种靶向AKR1C3的药物相比,化合物45是唯一被证明是直接的AR拮抗剂的化合物[71]

因此,化合物45是真正抑制AKR1C3活性并直接拮抗AR的“首创”双功能化合物。双功能抑制剂能更全面地阻断雄激素的合成,为晚期PC和CRPC的治疗提供了新的策略。

Figure 9. Representative bifunctional inhibitors

9. 代表性双功能抑制剂

5. 总结

AKR1C3是一种广泛分布于肝脏、前列腺和乳腺组织的多用途酶,在类固醇激素和前列腺素代谢中起关键作用。在前列腺癌和肝癌中观察到表达水平的升高,表明AKR1C3是治疗CRPC和HCC的潜在靶点。尽管如此,仍有几个关键问题需要对不同肿瘤模型进行系统研究。首先,特定的AKR1C3变异体治疗激素依赖性或激素非依赖性癌症的适用性需要澄清。其次,需要阐明克服放化疗耐药的确切机制。第三,识别和解决AKR1C3抑制剂临床开发中的瓶颈至关重要。解决这些问题需要在基础实验室进行全面的研究,以揭示AKR1C3的新的抗癌机制。持续的研究努力旨在揭示AKR1C3的复杂性,并改进抑制剂的设计,以重塑癌症治疗的前景,为改善患者的预后提供新的途径。

NOTES

*通讯作者。

参考文献

[1] Brožič, P., Turk, S., Adeniji, A.O., Konc, J., Janežič, D., Penning, T.M., et al. (2012) Selective Inhibitors of Aldo-Keto Reductases AKR1C1 and AKR1C3 Discovered by Virtual Screening of a Fragment Library. Journal of Medicinal Chemistry, 55, 7417-7424.
https://doi.org/10.1021/jm300841n
[2] Rižner, T.L. and Penning, T.M. (2020) Aldo-keto Reductase 1C3—Assessment as a New Target for the Treatment of Endometriosis. Pharmacological Research, 152, Article ID: 104446.
https://doi.org/10.1016/j.phrs.2019.104446
[3] Penning, T.M. (2019) AKR1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase): Roles in Malignancy and Endocrine Disorders. Molecular and Cellular Endocrinology, 489, 82-91.
https://doi.org/10.1016/j.mce.2018.07.002
[4] Yepuru, M., Wu, Z., Kulkarni, A., Yin, F., Barrett, C.M., Kim, J., et al. (2013) Steroidogenic Enzyme AKR1C3 Is a Novel Androgen Receptor-Selective Coactivator That Promotes Prostate Cancer Growth. Clinical Cancer Research, 19, 5613-5625.
https://doi.org/10.1158/1078-0432.ccr-13-1151
[5] Zeng, C., Chang, L., Ying, M., Cao, J., He, Q., Zhu, H., et al. (2017) Aldo-Keto Reductase AKR1C1-AKR1C4: Functions, Regulation, and Intervention for Anti-Cancer Therapy. Frontiers in Pharmacology, 8, Article 119.
https://doi.org/10.3389/fphar.2017.00119
[6] Penning, T.M., Steckelbroeck, S., Bauman, D.R., Miller, M.W., Jin, Y., Peehl, D.M., et al. (2006) Aldo-Keto Reductase (AKR) 1C3: Role in Prostate Disease and the Development of Specific Inhibitors. Molecular and Cellular Endocrinology, 248, 182-191.
https://doi.org/10.1016/j.mce.2005.12.009
[7] Brawley, O.W. (2012) Prostate Cancer Epidemiology in the United States. World Journal of Urology, 30, 195-200.
https://doi.org/10.1007/s00345-012-0824-2
[8] Jemal, A., Siegel, R., Xu, J. and Ward, E. (2010) Cancer Statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277-300.
https://doi.org/10.3322/caac.20073
[9] Miyamoto, H., Messing, E.M. and Chang, C. (2004) Androgen Deprivation Therapy for Prostate Cancer: Current Status and Future Prospects. The Prostate, 61, 332-353.
https://doi.org/10.1002/pros.20115
[10] Kirby, M., Hirst, C. and Crawford, E.D. (2011) Characterising the Castration-Resistant Prostate Cancer Population: A Systematic Review. International Journal of Clinical Practice, 65, 1180-1192.
https://doi.org/10.1111/j.1742-1241.2011.02799.x
[11] Wadosky, K.M. and Koochekpour, S. (2017) Androgen Receptor Splice Variants and Prostate Cancer: From Bench to Bedside. Oncotarget, 8, 18550-18576.
https://doi.org/10.18632/oncotarget.14537
[12] Locke, J.A., Guns, E.S., Lubik, A.A., Adomat, H.H., Hendy, S.C., Wood, C.A., et al. (2008) Androgen Levels Increase by Intratumoral de Novo Steroidogenesis during Progression of Castration-Resistant Prostate Cancer. Cancer Research, 68, 6407-6415.
https://doi.org/10.1158/0008-5472.can-07-5997
[13] Penning, T.M. (2014) Androgen Biosynthesis in Castration-Resistant Prostate Cancer. Endocrine-Related Cancer, 21, T67-T78.
https://doi.org/10.1530/erc-14-0109
[14] Li, M., Zhang, L., Yu, J., Wang, X., Cheng, L., Ma, Z., et al. (2024) AKR1C3 in Carcinomas: From Multifaceted Roles to Therapeutic Strategies. Frontiers in Pharmacology, 15, Article 1378292.
https://doi.org/10.3389/fphar.2024.1378292
[15] Liu, C., Lou, W., Zhu, Y., Yang, J.C., Nadiminty, N., Gaikwad, N.W., et al. (2015) Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer. Cancer Research, 75, 1413-1422.
https://doi.org/10.1158/0008-5472.can-14-3080
[16] Neuwirt, H., Bouchal, J., Kharaishvili, G., Ploner, C., Jöhrer, K., Pitterl, F., et al. (2020) Cancer-Associated Fibroblasts Promote Prostate Tumor Growth and Progression through Upregulation of Cholesterol and Steroid Biosynthesis. Cell Communication and Signaling, 18, Article No. 11.
https://doi.org/10.1186/s12964-019-0505-5
[17] Wang, S., Yang, Q., Fung, K. and Lin, H. (2008) AKR1C2 and AKR1C3 Mediated Prostaglandin D2 Metabolism Augments the PI3K/Akt Proliferative Signaling Pathway in Human Prostate Cancer Cells. Molecular and Cellular Endocrinology, 289, 60-66.
https://doi.org/10.1016/j.mce.2008.04.004
[18] Wang, B., Wu, S., Fang, Y., Sun, G., He, D., Hsieh, J., et al. (2020) The AKR1C3/AR‐V7 Complex Maintains CRPC Tumour Growth by Repressing B4GALT1 Expression. Journal of Cellular and Molecular Medicine, 24, 12032-12043.
https://doi.org/10.1111/jcmm.15831
[19] Mozar, F., Sharma, V., Gorityala, S., Albert, J.M., Xu, Y. and Montano, M.M. (2021) Downregulation of Dihydrotestosterone and Estradiol Levels by HEXIM1. Endocrinology, 163, bqab236.
https://doi.org/10.1210/endocr/bqab236
[20] Fan, L., Peng, G., Hussain, A., Fazli, L., Guns, E., Gleave, M., et al. (2015) The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells. Journal of Biological Chemistry, 290, 20865-20879.
https://doi.org/10.1074/jbc.m115.662155
[21] Park, S., Song, C., Lin, C., Jiang, S., Osmulski, P.A., Wang, C., et al. (2020) Inhibitory Interplay of SULT2B1b Sulfotransferase with AKR1C3 Aldo-Keto Reductase in Prostate Cancer. Endocrinology, 161, bqz042.
https://doi.org/10.1210/endocr/bqz042
[22] Thiery, J.P., Acloque, H., Huang, R.Y.J. and Nieto, M.A. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890.
https://doi.org/10.1016/j.cell.2009.11.007
[23] Dozmorov, M.G., Azzarello, J.T., Wren, J.D., Fung, K., Yang, Q., Davis, J.S., et al. (2010) Elevated AKR1C3 Expression Promotes Prostate Cancer Cell Survival and Prostate Cell-Mediated Endothelial Cell Tube Formation: Implications for Prostate Cancer Progressioan. BMC Cancer, 10, Article No. 672.
https://doi.org/10.1186/1471-2407-10-672
[24] Byrns, M.C., Jin, Y. and Penning, T.M. (2011) Inhibitors of Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3): Overview and Structural Insights. The Journal of Steroid Biochemistry and Molecular Biology, 125, 95-104.
https://doi.org/10.1016/j.jsbmb.2010.11.004
[25] Byrns, M.C. and Penning, T.M. (2009) Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase (AKR1C3): Role in Breast Cancer and Inhibition by Non-Steroidal Anti-Inflammatory Drug Analogs. Chemico-Biological Interactions, 178, 221-227.
https://doi.org/10.1016/j.cbi.2008.10.024
[26] Yoda, T., Kikuchi, K., Miki, Y., Onodera, Y., Hata, S., Takagi, K., et al. (2015) 11β-Prostaglandin F2α, a Bioactive Metabolite Catalyzed by AKR1C3, Stimulates Prostaglandin F Receptor and Induces Slug Expression in Breast Cancer. Molecular and Cellular Endocrinology, 413, 236-247.
https://doi.org/10.1016/j.mce.2015.07.008
[27] Yin, Y.D., Fu, M., Brooke, D.G., Heinrich, D.M., Denny, W.A. and Jamieson, S.M.F. (2014) The Activity of SN33638, an Inhibitor of AKR1C3, on Testosterone and 17β-Estradiol Production and Function in Castration-Resistant Prostate Cancer and ER-Positive Breast Cancer. Frontiers in Oncology, 4, Article 159.
https://doi.org/10.3389/fonc.2014.00159
[28] Lewis, M.J., Wiebe, J.P. and Heathcote, J.G. (2004) Expression of Progesterone Metabolizing Enzyme Genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) Is Altered in Human Breast Carcinoma. BMC Cancer, 4, Article No. 27.
https://doi.org/10.1186/1471-2407-4-27
[29] Zhao, S., Wagn, S., Zhao, Z. and Li, W. (2019) AKR1C1-3, Notably AKR1C3, Are Distinct Biomarkers for Liver Cancer Diagnosis and Prognosis: Database Mining in Malignancies. Oncology Letters, 18, 4515-4522.
https://doi.org/10.3892/ol.2019.10802
[30] Zhu, P., Feng, R., Lu, X., Liao, Y., Du, Z., Zhai, W., et al. (2021) Diagnostic and Prognostic Values of AKR1C3 and AKR1D1 in Hepatocellular Carcinoma. Aging, 13, 4138-4156.
https://doi.org/10.18632/aging.202380
[31] Zhou, Q., Tian, W., Jiang, Z., Huang, T., Ge, C., Liu, T., et al. (2021) A Positive Feedback Loop of AKR1C3-Mediated Activation of NF-κB and STAT3 Facilitates Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer Research, 81, 1361-1374.
https://doi.org/10.1158/0008-5472.can-20-2480
[32] Pan, D., Yang, W., Zeng, Y., Qin, H., Xu, Y., Gui, Y., et al. (2022) AKR1C3 Regulated by NRF2/MAFG Complex Promotes Proliferation via Stabilizing PARP1 in Hepatocellular Carcinoma. Oncogene, 41, 3846-3858.
https://doi.org/10.1038/s41388-022-02379-7
[33] Wu, C., Dai, C., Li, X., Sun, M., Chu, H., Xuan, Q., et al. (2022) AKR1C3-Dependent Lipid Droplet Formation Confers Hepatocellular Carcinoma Cell Adaptability to Targeted Therapy. Theranostics, 12, 7681-7698.
https://doi.org/10.7150/thno.74974
[34] Chen, J., Zhang, J., Tian, W., Ge, C., Su, Y., Li, J., et al. (2023) AKR1C3 Suppresses Ferroptosis in Hepatocellular Carcinoma through Regulation of YAP/SLC7A11 Signaling Pathway. Molecular Carcinogenesis, 62, 833-844.
https://doi.org/10.1002/mc.23527
[35] Garg, M., Nagata, Y., Kanojia, D., Mayakonda, A., Yoshida, K., Haridas Keloth, S., et al. (2015) Profiling of Somatic Mutations in Acute Myeloid Leukemia with FLT3-ITD at Diagnosis and Relapse. Blood, 126, 2491-2501.
https://doi.org/10.1182/blood-2015-05-646240
[36] Short, N.J., Rytting, M.E. and Cortes, J.E. (2018) Acute Myeloid Leukaemia. The Lancet, 392, 593-606.
https://doi.org/10.1016/s0140-6736(18)31041-9
[37] Morell, A., Čermáková, L., Novotná, E., Laštovičková, L., Haddad, M., Haddad, A., et al. (2020) Bruton’s Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3. Cancers, 12, Article 3731.
https://doi.org/10.3390/cancers12123731
[38] Wu, Z., Ou, J., Liu, N., Wang, Z., Chen, J., Cai, Z., et al. (2022) Upregulation of Tim‐3 Is Associated with Poor Prognosis in Acute Myeloid Leukemia. Cancer Medicine, 12, 8956-8969.
https://doi.org/10.1002/cam4.5549
[39] Verma, K., Zang, T., Gupta, N., Penning, T.M. and Trippier, P.C. (2016) Selective AKR1C3 Inhibitors Potentiate Chemotherapeutic Activity in Multiple Acute Myeloid Leukemia (AML) Cell Lines. ACS Medicinal Chemistry Letters, 7, 774-779.
https://doi.org/10.1021/acsmedchemlett.6b00163
[40] Penning, T.M., Jonnalagadda, S., Trippier, P.C. and Rižner, T.L. (2021) Aldo-keto Reductases and Cancer Drug Resistance. Pharmacological Reviews, 73, 1150-1171.
https://doi.org/10.1124/pharmrev.120.000122
[41] Wang, Y., Liu, Y., Zhou, C., Wang, C., Zhang, N., Cao, D., et al. (2020) An AKR1C3-Specific Prodrug with Potent Anti-Tumor Activities against T-ALL. Leukemia & Lymphoma, 61, 1660-1668.
https://doi.org/10.1080/10428194.2020.1728746
[42] He, P., Wang, C., Wang, Y., Wang, C., Zhou, C., Cao, D., et al. (2021) A Novel AKR1C3 Specific Prodrug TH3424 with Potent Antitumor Activity in Liver Cancer. Clinical Pharmacology & Therapeutics, 110, 229-237.
https://doi.org/10.1002/cpt.2171
[43] Evans, K., Duan, J., Pritchard, T., Jones, C.D., McDermott, L., Gu, Z., et al. (2019) OBI-3424, a Novel AKR1C3-Activated Prodrug, Exhibits Potent Efficacy against Preclinical Models of T-ALL. Clinical Cancer Research, 25, 4493-4503.
https://doi.org/10.1158/1078-0432.ccr-19-0551
[44] Reddi, D., Seaton, B.W., Woolston, D., Aicher, L., Monroe, L.D., Mao, Z.J., et al. (2022) AKR1C3 Expression in T Acute Lymphoblastic Leukemia/Lymphoma for Clinical Use as a Biomarker. Scientific Reports, 12, Article No. 5809.
https://doi.org/10.1038/s41598-022-09697-6
[45] Moradi Manesh, D., El-Hoss, J., Evans, K., Richmond, J., Toscan, C.E., Bracken, L.S., et al. (2015) AKR1C3 Is a Biomarker of Sensitivity to PR-104 in Preclinical Models of T-Cell Acute Lymphoblastic Leukemia. Blood, 126, 1193-1202.
https://doi.org/10.1182/blood-2014-12-618900
[46] Frycz, B.A., Murawa, D., Borejsza-Wysocki, M., Wichtowski, M., Spychała, A., Marciniak, R., et al. (2016) Transcript Level of AKR1C3 Is Down-Regulated in Gastric Cancer. Biochemistry and Cell Biology, 94, 138-146.
https://doi.org/10.1139/bcb-2015-0096
[47] Li, Y., Tang, J., Li, J., Du, Y., Bai, F., Yang, L., et al. (2022) ARID3A Promotes the Chemosensitivity of Colon Cancer by Inhibiting AKR1C3. Cell Biology International, 46, 965-975.
https://doi.org/10.1002/cbin.11789
[48] Kafka, M., Mayr, F., Temml, V., Möller, G., Adamski, J., Höfer, J., et al. (2020) Dual Inhibitory Action of a Novel AKR1C3 Inhibitor on Both Full-Length AR and the Variant AR-V7 in Enzalutamide Resistant Metastatic Castration Resistant Prostate Cancer. Cancers, 12, Article 2092.
https://doi.org/10.3390/cancers12082092
[49] Zhao, J., Ning, S., Lou, W., Yang, J.C., Armstrong, C.M., Lombard, A.P., et al. (2020) Cross-Resistance among Next-Generation Antiandrogen Drugs through the AKR1C3/AR-V7 Axis in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 19, 1708-1718.
https://doi.org/10.1158/1535-7163.mct-20-0015
[50] Xu, D., Zhang, Y. and Jin, F. (2021) The Role of AKR1 Family in Tamoxifen Resistant Invasive Lobular Breast Cancer Based on Data Mining. BMC Cancer, 21, Article No. 1321.
https://doi.org/10.1186/s12885-021-09040-8
[51] Zang, T., Verma, K., Chen, M., Jin, Y., Trippier, P.C. and Penning, T.M. (2015) Screening Baccharin Analogs as Selective Inhibitors against Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3). Chemico-Biological Interactions, 234, 339-348.
https://doi.org/10.1016/j.cbi.2014.12.015
[52] Verma, K., Gupta, N., Zang, T., Wangtrakluldee, P., Srivastava, S.K., Penning, T.M., et al. (2018) AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells. Molecular Cancer Therapeutics, 17, 1833-1845.
https://doi.org/10.1158/1535-7163.mct-17-1023
[53] Endo, S., Hu, D., Matsunaga, T., Otsuji, Y., El-Kabbani, O., Kandeel, M., et al. (2014) Synthesis of Non-Prenyl Analogues of Baccharin as Selective and Potent Inhibitors for Aldo-Keto Reductase 1C3. Bioorganic & Medicinal Chemistry, 22, 5220-5233.
https://doi.org/10.1016/j.bmc.2014.08.007
[54] Verma, K., Zang, T., Penning, T.M. and Trippier, P.C. (2019) Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Journal of Medicinal Chemistry, 62, 3590-3616.
https://doi.org/10.1021/acs.jmedchem.9b00090
[55] Hulcová, D., Breiterová, K., Zemanová, L., Siatka, T., Šafratová, M., Vaněčková, N., et al. (2017) AKR1C3 Inhibitory Potency of Naturally-Occurring Amaryllidaceae Alkaloids of Different Structural Types. Natural Product Communications, 12, 245-246.
https://doi.org/10.1177/1934578x1701200226
[56] Li, J., Tian, Y., Zhao, L., Wang, Y., Zhang, H., Xu, D., et al. (2016) Berberine Inhibits Androgen Synthesis by Interaction with Aldo-Keto Reductase 1C3 in 22Rv1 Prostate Cancer Cells. Asian Journal of Andrology, 18, 607-612.
https://doi.org/10.4103/1008-682x.169997
[57] Santos, A.R.N., Sheldrake, H.M., Ibrahim, A.I.M., Danta, C.C., Bonanni, D., Daga, M., et al. (2019) Exploration of [2 + 2 + 2] Cyclotrimerisation Methodology to Prepare Tetrahydroisoquinoline-Based Compounds with Potential Aldo-Keto Reductase 1C3 Target Affinity. MedChemComm, 10, 1476-1480.
https://doi.org/10.1039/c9md00201d
[58] Novotná, E., Büküm, N., Hofman, J., Flaxová, M., Kouklíková, E., Louvarová, D., et al. (2018) Roscovitine and Purvalanol a Effectively Reverse Anthracycline Resistance Mediated by the Activity of Aldo-Keto Reductase 1C3 (AKR1C3): A Promising Therapeutic Target for Cancer Treatment. Biochemical Pharmacology, 156, 22-31.
https://doi.org/10.1016/j.bcp.2018.08.001
[59] Novotná, E., Büküm, N., Hofman, J., Flaxová, M., Kouklíková, E., Louvarová, D., et al. (2018) Aldo-Keto Reductase 1C3 (AKR1C3): A Missing Piece of the Puzzle in the Dinaciclib Interaction Profile. Archives of Toxicology, 92, 2845-2857.
https://doi.org/10.1007/s00204-018-2258-0
[60] Bukum, N., Novotna, E., Morell, A., Hofman, J. and Wsol, V. (2019) Buparlisib Is a Novel Inhibitor of Daunorubicin Reduction Mediated by Aldo-Keto Reductase 1C3. Chemico-Biological Interactions, 302, 101-107.
https://doi.org/10.1016/j.cbi.2019.01.026
[61] Zhao, Y., Zheng, X., Zhang, H., Zhai, J., Zhang, L., Li, C., et al. (2015) In Vitro Inhibition of AKR1CS by Sulphonylureas and the Structural Basis. Chemico-Biological Interactions, 240, 310-315.
https://doi.org/10.1016/j.cbi.2015.09.006
[62] Byrns, M.C., Steckelbroeck, S. and Penning, T.M. (2008) An Indomethacin Analogue, N-(4-Chlorobenzoyl)-Melatonin, Is a Selective Inhibitor of Aldo-Keto Reductase 1C3 (Type 2 3α-HSD, Type 5 17β-HSD, and Prostaglandin F Synthase), a Potential Target for the Treatment of Hormone Dependent and Hormone Independent Malignancies. Biochemical Pharmacology, 75, 484-493.
https://doi.org/10.1016/j.bcp.2007.09.008
[63] Flanagan, J.U., Yosaatmadja, Y., Teague, R.M., Chai, M.Z.L., Turnbull, A.P. and Squire, C.J. (2012) Crystal Structures of Three Classes of Non-Steroidal Anti-Inflammatory Drugs in Complex with Aldo-Keto Reductase 1C3. PLOS ONE, 7, e43965.
https://doi.org/10.1371/journal.pone.0043965
[64] Liedtke, A.J., Adeniji, A.O., Chen, M., Byrns, M.C., Jin, Y., Christianson, D.W., et al. (2013) Development of Potent and Selective Indomethacin Analogues for the Inhibition of AKR1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase) in Castrate-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 56, 2429-2446.
https://doi.org/10.1021/jm3017656
[65] Adeniji, A.O., Twenter, B.M., Byrns, M.C., Jin, Y., Chen, M., Winkler, J.D., et al. (2012) Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (Type 5 17-Hydroxysteroid Dehydrogenase) Based on n-Phenyl-Aminobenzoates and Their Structure-Activity Relationships. Journal of Medicinal Chemistry, 55, 2311-2323.
https://doi.org/10.1021/jm201547v
[66] Pippione, A.C., Carnovale, I.M., Bonanni, D., Sini, M., Goyal, P., Marini, E., et al. (2018) Potent and Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Based on the Benzoisoxazole Moiety: Application of a Bioisosteric Scaffold Hopping Approach to Flufenamic Acid. European Journal of Medicinal Chemistry, 150, 930-945.
https://doi.org/10.1016/j.ejmech.2018.03.040
[67] Pippione, A.C., Giraudo, A., Bonanni, D., Carnovale, I.M., Marini, E., Cena, C., et al. (2017) Hydroxytriazole Derivatives as Potent and Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Discovered by Bioisosteric Scaffold Hopping Approach. European Journal of Medicinal Chemistry, 139, 936-946.
https://doi.org/10.1016/j.ejmech.2017.08.046
[68] Hendriks, C.M.M., Penning, T.M., Zang, T., Wiemuth, D., Gründer, S., Sanhueza, I.A., et al. (2015) Pentafluorosulfanyl-containing Flufenamic Acid Analogs: Syntheses, Properties and Biological Activities. Bioorganic & Medicinal Chemistry Letters, 25, 4437-4440.
https://doi.org/10.1016/j.bmcl.2015.09.012
[69] Féau, C., Arnold, L.A., Kosinski, A., Zhu, F., Connelly, M. and Guy, R.K. (2009) Novel Flufenamic Acid Analogues as Inhibitors of Androgen Receptor Mediated Transcription. ACS Chemical Biology, 4, 834-843.
https://doi.org/10.1021/cb900143a
[70] Chen, M., Adeniji, A.O., Twenter, B.M., Winkler, J.D., Christianson, D.W. and Penning, T.M. (2012) Crystal Structures of AKR1C3 Containing an N-(Aryl)amino-Benzoate Inhibitor and a Bifunctional AKR1C3 Inhibitor and Androgen Receptor Antagonist. Therapeutic Leads for Castrate Resistant Prostate Cancer. Bioorganic & Medicinal Chemistry Letters, 22, 3492-3497.
https://doi.org/10.1016/j.bmcl.2012.03.085
[71] Wangtrakuldee, P., Adeniji, A.O., Zang, T., Duan, L., Khatri, B., Twenter, B.M., et al. (2019) A 3-(4-Nitronaphthen-1-Yl) Amino-Benzoate Analog as a Bifunctional AKR1C3 Inhibitor and AR Antagonist: Head to Head Comparison with Other Advanced AKR1C3 Targeted Therapeutics. The Journal of Steroid Biochemistry and Molecular Biology, 192, Article ID: 105283.
https://doi.org/10.1016/j.jsbmb.2019.01.001

Baidu
map