[1] |
Zhang, C., Gu, Y., Jiang, Q., Sheng, Z., Feng, R., Wang, S., et al. (2024) Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products. Nano-Micro Letters, 17, Article No. 66. https://doi.org/10.1007/s40820-024-01568-1 |
[2] |
Xu, Q., Jiang, J., Sheng, X., Jing, Q., Wang, X., Duan, L., et al. (2023) Understanding the Synergistic Effect of Piezoelectric Polarization and the Extra Electrons Contributed by Oxygen Vacancies on an Efficient Piezo-Photocatalysis CO2 Reduction. Inorganic Chemistry Frontiers, 10, 2939-2950. https://doi.org/10.1039/d3qi00405h |
[3] |
Shi, H., Fu, M., Yuan, S., Lu, Y., Yang, Z., Yue, C., et al. (2024) Engineered Escherichia coli Whole Cell-Mediated Electro-Biocatalysis for Carbon Dioxide to Formic Acid Conversion. ACS Sustainable Chemistry & Engineering, 12, 5544-5554. https://doi.org/10.1021/acssuschemeng.3c08129 |
[4] |
Tran, D.S., Vu, N., Nemamcha, H., Boisvert, C., Legrand, U., Fink, A.G., et al. (2025) Design of Electrocatalysts and Electrodes for CO2 Electroreduction to Formic Acid and Formate. Coordination Chemistry Reviews, 524, Article 216322. https://doi.org/10.1016/j.ccr.2024.216322 |
[5] |
Xiong, B., Yang, Y., Liu, J., Hua, Z. and Yang, Y. (2022) Electrocatalytic Reduction of CO2 to C1 Products over Bimetal Catalysts: A DFT Screening Study. Fuel Processing Technology, 233, Article 107315. https://doi.org/10.1016/j.fuproc.2022.107315 |
[6] |
Xu, Z., Tan, X., Chen, C., Wang, X., Sui, R., Zhuang, Z., et al. (2024) Recent Advances in Microenvironment Regulation for Electrocatalysis. National Science Review, 11, nwae315. https://doi.org/10.1093/nsr/nwae315 |
[7] |
Tang, T., Bai, X., Wang, Z. and Guan, J. (2024) Structural Engineering of Atomic Catalysts for Electrocatalysis. Chemical Science, 15, 5082-5112. https://doi.org/10.1039/d4sc00569d |
[8] |
Lü, F., Qi, G., Liu, X., Zhang, C., Guo, R., Peng, X., et al. (2019) Selective Electrolysis of CO2 to CO on Ultrathin In2Se3 Nanosheets. Electrochemistry Communications, 103, 127-132. https://doi.org/10.1016/j.elecom.2019.05.020 |
[9] |
Zhang, C., Follana-Berná, J., Dragoe, D., Halime, Z., Gotico, P., Sastre-Santos, Á., et al. (2024) Cobalt Tetracationic 3,4-pyridinoporphyrazine for Direct CO2 to Methanol Conversion Escaping the CO Intermediate Pathway. Angewandte Chemie International Edition, 63, e202411967. https://doi.org/10.1002/anie.202411967 |
[10] |
Liu, Y., Deng, C., Liu, F., Dai, X., Yang, X., Chen, Y., et al. (2024) Coupling Electron Donors with Proton Repulsion via Pt-N3-S Sites to Boost CO2 Reduction in CO2/H2 Fuel Cell. Nano Energy, 126, Article 109667. https://doi.org/10.1016/j.nanoen.2024.109667 |
[11] |
Zeng, L., Shi, J., Chen, H. and Lin, C. (2021) Ag Nanowires/C as a Selective and Efficient Catalyst for CO2 Electroreduction. Energies, 14, Article 2840. https://doi.org/10.3390/en14102840 |
[12] |
Fu, J., Zhu, W., Chen, Y., Yin, Z., Li, Y., Liu, J., et al. (2019) Bipyridine-Assisted Assembly of Au Nanoparticles on Cu Nanowires to Enhance the Electrochemical Reduction of CO2. Angewandte Chemie International Edition, 58, 14100-14103. https://doi.org/10.1002/anie.201905318 |
[13] |
Wang, G., Li, X., Yang, X., Liu, L., Cai, Y., Wu, Y., et al. (2022) Metal-Based Aerogels Catalysts for Electrocatalytic CO2 Reduction. Chemistry—A European Journal, 28, e202201834. https://doi.org/10.1002/chem.202201834 |
[14] |
He, J., Dettelbach, K.E., Salvatore, D.A., Li, T. and Berlinguette, C.P. (2017) High-Throughput Synthesis of Mixed-Metal Electrocatalysts for CO2 Reduction. Angewandte Chemie International Edition, 56, 6068-6072. https://doi.org/10.1002/anie.201612038 |
[15] |
Cao, X., Chen, C., Min, Y., Yuan, H., Chen, S. and Xu, L. (2021) Prediction of Bimetal Embedded in Two-Dimensional Materials for CO2 Reduction Electrocatalysis with a New Integrated Descriptor. Physical Chemistry Chemical Physics, 23, 26241-26249. https://doi.org/10.1039/d1cp03805b |
[16] |
Shao, Q., Wang, P. and Huang, X. (2018) Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Advanced Functional Materials, 29, Article 1806419. https://doi.org/10.1002/adfm.201806419 |
[17] |
He, C., Wang, S., Jiang, X., Hu, Q., Yang, H. and He, C. (2022) Bimetallic Cobalt-Copper Nanoparticle-Decorated Hollow Carbon Nanofibers for Efficient CO2 Electroreduction. Frontiers in Chemistry, 10, Article 904241. https://doi.org/10.3389/fchem.2022.904241 |
[18] |
Xiong, W., Yang, J., Shuai, L., Hou, Y., Qiu, M., Li, X., et al. (2019) CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction. Chem Electro Chem, 6, 5951-5957. https://doi.org/10.1002/celc.201901381 |
[19] |
Feng, J., Wang, X. and Pan, H. (2024) In-Situ Reconstruction of Catalyst in Electrocatalysis. Advanced Materials, 36, Article 2411688. https://doi.org/10.1002/adma.202411688 |
[20] |
Shen, Y.X., Liu, T.F., Li, R.T., Lv, H.F., Ta, N., Zhang, X.M., et al. (2023) In Situ Electrochemical Reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-Δ Perovskite Cathode for CO2 Electrolysis in Solid Oxide Electrolysis Cells. National Science Review, 10, nwad078. https://doi.org/10.1093/nsr/nwad078 |
[21] |
Liu, C., Zhang, X., Huang, J., Guan, M., Xu, M. and Gu, Z. (2022) In Situ Reconstruction of Cu-N Coordinated MOFs to Generate Dispersive Cu/Cu2O Nanoclusters for Selective Electroreduction of CO2 to C2H4. ACS Catalysis, 12, 15230-15240. https://doi.org/10.1021/acscatal.2c04275 |
[22] |
Guo, Z., Yu, Y., Li, C., Campos dos Santos, E., Wang, T., Li, H., et al. (2024) Deciphering Structure-Activity Relationship towards CO2 Electroreduction over SnO2 by a Standard Research Paradigm. Angewandte Chemie International Edition, 63, e202319913. https://doi.org/10.1002/anie.202319913 |
[23] |
Singh, C., Mukhopadhyay, S. and Hod, I. (2021) Metal-Organic Framework Derived Nanomaterials for Electrocatalysis: Recent Developments for CO2 and N2 Reduction. Nano Convergence, 8, Article No, 1. https://doi.org/10.1186/s40580-020-00251-6 |
[24] |
Mukherjee, S., Hou, S., Watzele, S.A., Garlyyev, B., Li, W., Bandarenka, A.S., et al. (2022) Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF-Derived Electrocatalysts. Chem Electro Chem, 9, e202101476. https://doi.org/10.1002/celc.202101476 |
[25] |
Li, J., Luo, H., Li, B., Ma, J. and Cheng, P. (2023) Application of MOF-Derived Materials as Electrocatalysts for CO2 Conversion. Materials Chemistry Frontiers, 7, 6107-6129. https://doi.org/10.1039/d3qm00835e |
[26] |
Xiao, J., Zhang, T. and Wang, Q. (2022) Metal-Organic Framework Derived Single-Atom Catalysts for CO2 Conversion to Methanol. Current Opinion in Green and Sustainable Chemistry, 37, Article 100660. https://doi.org/10.1016/j.cogsc.2022.100660 |
[27] |
Huang, J., Zhang, X., Huang, J., Zheng, D., Xu, M. and Gu, Z. (2023) MOF-Based Materials for Electrochemical Reduction of Carbon Dioxide. Coordination Chemistry Reviews, 494, Article 215333. https://doi.org/10.1016/j.ccr.2023.215333 |
[28] |
Kharissova, O.V., Kharisov, B.I. and González, L.T. (2020) Recent Trends on Density Functional Theory-Assisted Calculations of Structures and Properties of Metal-Organic Frameworks and Metal-Organic Frameworks-Derived Nanocarbons. Journal of Materials Research, 35, 1424-1438. https://doi.org/10.1557/jmr.2020.109 |
[29] |
van den Berg, D., Izelaar, B., Fu, S. and Kortlever, R. (2024) The Effect of Surface Conditions on the Electrochemical CO2 Reduction Performance of Bimetallic AuPd Electrocatalysts. Catalysis Science & Technology, 14, 555-561. https://doi.org/10.1039/d3cy01411h |
[30] |
Wang, Y., Niu, C. and Zhu, Y. (2019) Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials, 9, Article 173. https://doi.org/10.3390/nano9020173 |
[31] |
Śliwa, M., Zhang, H., Gao, J., Stephens, B.O., Patera, A.J., Raciti, D., et al. (2024) Selective CO2 Reduction Electrocatalysis Using AgCu Nanoalloys Prepared by a “Host-Guest” Method. Nano Letters, 24, 13911-13918. https://doi.org/10.1021/acs.nanolett.4c02638 |
[32] |
Rasul, S., Anjum, D.H., Jedidi, A., Minenkov, Y., Cavallo, L. and Takanabe, K. (2014) A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO. Angewandte Chemie International Edition, 54, 2146-2150. https://doi.org/10.1002/anie.201410233 |
[33] |
Su, X., Sun, Y., Jin, L., Zhang, L., Yang, Y., Kerns, P., et al. (2020) Hierarchically Porous Cu/Zn Bimetallic Catalysts for Highly Selective CO2 Electroreduction to Liquid C2 Products. Applied Catalysis B: Environmental, 269, Article 118800. https://doi.org/10.1016/j.apcatb.2020.118800 |
[34] |
Mo, C., Yang, C., Hu, Y. and Peng, J. (2024) Bimetallic Bi-In Nanoparticles for Efficient Production of Formate via Electrocatalytic Conversion of CO2. Journal of Solid State Electrochemistry, 28, 4235-4246. https://doi.org/10.1007/s10008-024-06042-x |
[35] |
Merino-Garcia, I., Albo, J., Krzywda, P., Mul, G. and Irabien, A. (2020) Bimetallic Cu-Based Hollow Fibre Electrodes for CO2 Electroreduction. Catalysis Today, 346, 34-39. https://doi.org/10.1016/j.cattod.2019.03.025 |
[36] |
Luo, M., Fu, X., Geng, S., Li, Z. and Li, M. (2023) Efficient Electrochemical CO2 Reduction via CuAg Doped CeO2. Fuel, 347, Article 128470. https://doi.org/10.1016/j.fuel.2023.128470 |
[37] |
Li, Y., Zhou, L., Han, G., Cui, W., Li, W. and Hu, T. (2024) ZIF-Derived Catalyst with Inverse ZnO/Co Structure for Efficient CO2 Methanation. International Journal of Hydrogen Energy, 51, 452-461. https://doi.org/10.1016/j.ijhydene.2023.10.094 |
[38] |
Wang, P., Li, T., Wu, Q., Du, R., Zhang, Q., Huang, W., et al. (2022) Molecular Assembled Electrocatalyst for Highly Selective CO2 Fixation to C2+ Products. ACS Nano, 16, 17021-17032. https://doi.org/10.1021/acsnano.2c07138 |
[39] |
Xue, Y., Li, C., Zhou, X., Kuang, Z., Zhao, W., Zhang, Q., et al. (2022) MOF-Derived Cu/Bi Bi-Metallic Catalyst to Enhance Selectivity toward Formate for CO2 Electroreduction. Chem Electro Chem, 9, e202101648. https://doi.org/10.1002/celc.202101648 |
[40] |
Yang, Z., Wang, H., Bi, X., Tan, X., Zhao, Y., Wang, W., et al. (2023) Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows. Energy & Environmental Materials, 7, e12508. https://doi.org/10.1002/eem2.12508 |
[41] |
Zhao, R., Zhu, Z., Ouyang, T. and Liu, Z. (2023) Selective CO2-to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angewandte Chemie International Edition, 63, e202313597. https://doi.org/10.1002/anie.202313597 |
[42] |
Yang, X., Wang, Q., Chen, F., Zang, H., Liu, C., Yu, N., et al. (2023) In-Situ Electrochemical Restructuring of Cu2BiSx Solid Solution into Bi/CuXSy Heterointerfaces Enabling Stabilization Intermediates for High-Performance CO2 Electroreduction to Formate. Nano Research, 16, 7974-7981. https://doi.org/10.1007/s12274-022-5337-8 |
[43] |
Xue, Y., Guo, Y., Cui, H. and Zhou, Z. (2021) Catalyst Design for Electrochemical Reduction of CO2 to Multicarbon Products. Small Methods, 5, Article 2100736. https://doi.org/10.1002/smtd.202100736 |
[44] |
Li, J., Chen, W., Lin, R., Huang, M., Wang, M., Chai, M., et al. (2021) Thermally Evaporated Ag-Au Bimetallic Catalysts for Efficient Electrochemical CO2 Reduction. Particle & Particle Systems Characterization, 38, Article 2100148. https://doi.org/10.1002/ppsc.202100148 |
[45] |
Li, W., Zhang, Z., Liu, W., Gan, Q., Liu, M., Huo, S., et al. (2022) ZnSn Nanocatalyst: Ultra-High Formate Selectivity from CO2 Electrochemical Reduction and the Structure Evolution Effect. Journal of Colloid and Interface Science, 608, 2791-2800. https://doi.org/10.1016/j.jcis.2021.11.002 |
[46] |
Wang, W., Wang, Z., Yang, R., Duan, J., Liu, Y., Nie, A., et al. (2021) In Situ Phase Separation into Coupled Interfaces for Promoting CO2 Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie International Edition, 60, 22940-22947. https://doi.org/10.1002/anie.202110000 |
[47] |
Sun, B., Cheng, H., Shi, C., Guan, J., Jiang, Z., Ma, S., et al. (2025) Metal-Organic Framework-Derived Silver/Copper-Oxide Catalyst for Boosting the Productivity of Carbon Dioxide Electrocatalysis to Ethylene. Journal of Colloid and Interface Science, 679, 615-623. https://doi.org/10.1016/j.jcis.2024.10.014 |
[48] |
Shen, H., Zhao, Y., Zhang, L., He, Y., Yang, S., Wang, T., et al. (2022) In-Situ Constructuring of Copper-Doped Bismuth Catalyst for Highly Efficient CO2 Electrolysis to Formate in Ampere-Level. Advanced Energy Materials, 13, Article 2202818. https://doi.org/10.1002/aenm.202202818 |
[49] |
Zou, X., Li, A., Ma, C., Gao, Z., Zhou, B., Zhu, L., et al. (2023) Nitrogen-Doped Carbon Confined Cu-Ag Bimetals for Efficient Electroreduction of CO2 to High-Order Products. Chemical Engineering Journal, 468, Article 143606. https://doi.org/10.1016/j.cej.2023.143606 |
[50] |
He, A., Yang, Y., Zhang, Q., Yang, M., Zou, Q., Du, J., et al. (2022) The Enhanced Local CO Concentration for Efficient CO2 Electrolysis towards C2 Products on Tandem Active Sites. Chemical Engineering Journal, 450, Article 138009. https://doi.org/10.1016/j.cej.2022.138009 |
[51] |
Xiong, B., Liu, J., Yang, Y., Yang, Y. and Hua, Z. (2022) Effect Mechanism of NO on Electrocatalytic Reduction of CO2 to CO over Pd@Cu Bimetal Catalysts. Fuel, 323, Article 124339. https://doi.org/10.1016/j.fuel.2022.124339 |
[52] |
Xiang, H., Rasul, S., Hou, B., Portoles, J., Cumpson, P. and Yu, E.H. (2019) Copper-Indium Binary Catalyst on a Gas Diffusion Electrode for High-Performance CO2 Electrochemical Reduction with Record CO Production Efficiency. ACS Applied Materials & Interfaces, 12, 601-608. https://doi.org/10.1021/acsami.9b16862 |
[53] |
Liu, B., Xie, Y., Wang, X., Gao, C., Chen, Z., Wu, J., et al. (2022) Copper-Triggered Delocalization of Bismuth P-Orbital Favours High-Throughput CO2 Electroreduction. Applied Catalysis B: Environmental, 301, Article 120781. https://doi.org/10.1016/j.apcatb.2021.120781 |
[54] |
Zhang, M., Zhang, Z., Zhao, Z., Huang, H., Anjum, D.H., Wang, D., et al. (2021) Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu-Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis, 11, 11103-11108. https://doi.org/10.1021/acscatal.1c02556 |