细胞焦亡在正畸牙移动中的研究进展
Research Progress on Cell Pyroptosis in Orthodontic Tooth Movement
DOI: 10.12677/md.2025.151015, PDF, HTML, XML,   
作者: 杨国寅, 郑雷蕾*:重庆医科大学附属口腔医院正畸科,重庆;口腔疾病与生物医学重庆市重点实验室,重庆;重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 细胞死亡正畸牙移动细胞焦亡Cell Death Orthodontic Tooth Movement Cell Pyroptosis
摘要: 错颌畸形是世界卫生组织认定的三大口腔疾病之一,并且在我国的发病率逐年上升。作为一种常见的口腔健康问题,错颌畸形不仅会影响患者的颌面功能和面部外观,还可能对其心理健康产生长期且深远的影响。正因为如此,越来越多的患者选择通过正畸治疗来改善这一问题。在正畸治疗过程中,施加的机械力会引发牙周组织中的炎症级联反应,进而促使牙周膜和牙槽骨的改建与重塑,从而实现牙齿的移动。免疫系统在这一复杂的生物学过程中发挥着关键作用,是正畸牙移动和牙槽骨改建中不可缺少的调节因子。细胞焦亡作为一种炎性程序性细胞死亡方式,特点是通过炎症小体的激活以及Caspase-1或Caspase-4/5的参与,其在维持组织稳态和激活炎症反应中起着至关重要的作用。然而关于细胞焦亡与正畸牙移动的具体联系尚未被完全阐明,因此,文章对细胞焦亡与正畸牙移动之间的关系及潜在机制进行综述,以期为相关基础研究和临床实践提供具有指导意义的参考,并为患者带来更为精确和有效的干预手段。
Abstract: Malocclusion is one of the three major oral diseases recognized by the World Health Organization, and the incidence rate is increasing yearly in China. As a common oral health problem, malocclusion not only affects the patient’s facial function and appearance but may also have long-term and profound effects on their mental health. Because of this, more and more patients are choosing orthodontic treatment to improve this problem. During orthodontic treatment, the applied mechanical force can trigger an inflammatory cascade reaction in the periodontal tissue, promoting the remodeling and reconstruction of the periodontal membrane and alveolar bone, thereby achieving tooth movement. The immune system plays a crucial role in this complex biological process and is an indispensable regulatory factor in orthodontic tooth movement and alveolar bone remodeling. Cellular pyroptosis, as an inflammatory programmed cell death mode, is characterized by the activation of inflammasomes and the involvement of Caspase-1 or Caspase-4/5, playing a crucial role in maintaining tissue homeostasis and activating inflammatory responses. However, the specific relationship between cell necrosis and orthodontic tooth movement has not been fully elucidated. Therefore, this article reviews the relationship and potential mechanisms between cell necrosis and orthodontic tooth movement to provide guiding references for related basic research and clinical practice and to bring more precise and effective intervention methods for patients.
文章引用:杨国寅, 郑雷蕾. 细胞焦亡在正畸牙移动中的研究进展[J]. 医学诊断, 2025, 15(1): 107-112. https://doi.org/10.12677/md.2025.151015

1. 正畸牙移动阶段

错颌畸形是世界卫生组织认定的三大口腔疾病之一,并且在我国的发病率逐年上升[1]。作为一种常见的口腔健康问题,错颌畸形不仅影响患者的颌面功能和颜面美观,还对心理健康产生深远影响。越来越多的患者选择通过正畸治疗来改善这一问题。正畸牙移动(Orthodontic Tooth Movement, OTM)是由机械力介导的引发无菌性炎症反应的骨改建过程,其本质是骨吸收和骨沉积的协调作用[2]。大量的研究表明牙周膜细胞是机械力的主要靶点,这些细胞在应对局部创伤、血管闭塞和缺氧时,会触发复杂且高度协调的无菌性炎症免疫反应,通过多种细胞和介质间的相互作用,完成牙周组织的改建和重塑[3]。传统观点将正畸牙移动过程分为四个阶段,即初始阶段、停滞阶段、加速阶段以及线性阶段。在初始阶段,牙周膜和牙槽骨因受到机械力的挤压而发生形变,牙齿迅速移动;随后进入停滞阶段,此时由于硬骨板的阻塞以及牙周膜中出现玻璃样变性,牙齿移动受到抑制并进入短暂的停滞期;随着坏死区域被清除,在适宜的机械力作用下,牙齿移动速度逐步增加,进入加速阶段;如果持续施加适当的力量,最终会进入线性阶段,在这一阶段牙齿移动呈现稳定的线性规律,每个阶段的差异性主要体现在牙齿移动速度上[4]。经典的“张力–压力理论”认为,机械力作用于牙齿时会引起牙周膜的形变,形成张力侧和压力侧,从而导致不同的生物学反应[2]。然而,该理论未能完全解释张力侧为何也会出现破骨细胞活动的现象,因此,“双相理论”被提出以补充解释这一现象。双相理论认为,OTM由两个连续的阶段组成:分解代谢阶段和合成代谢阶段。在分解代谢阶段,压力侧骨吸收被激活,通过破骨细胞的作用进行骨质的降解;在合成代谢阶段,张力侧则通过成骨细胞的作用进行骨形成,这一理论的提出为解释正畸牙移动中的复杂生物学机制提供了更加全面的视角[5]

2. 细胞死亡

细胞死亡是生物体内的正常生理现象,对于维持体内稳态和生物学平衡至关重要。根据是否受到调控,细胞死亡可分为程序性细胞死亡和非程序性细胞死亡两大类型[6]。程序性细胞死亡是保持机体稳态的重要过程,涵盖了多种不同形式,如细胞凋亡、自噬、铁死亡、坏死性凋亡以及细胞焦亡等。与此相对的非程序性细胞死亡通常是由外界剧烈刺激引发的,且缺乏明确的调控机制。

程序性细胞死亡的不同形式各具特征,且具有不同的生理功能。例如,细胞凋亡和自噬主要以抗炎作用为特征,有助于抑制过度炎症反应并维持组织稳态;而细胞焦亡、坏死和铁死亡则表现出明显的促炎特性,常伴随着强烈的炎症反应,可能对组织造成损伤[7]。细胞凋亡是首个被证实的可受调控的细胞死亡方式,通常由Caspase-3和Caspase-7介导[8]。凋亡过程中,细胞会收缩,细胞膜起泡并形成凋亡小泡,细胞核浓缩并裂解成多个碎片,这些碎片随后被细胞膜包裹形成凋亡小体,这些凋亡小体最终被邻近细胞或巨噬细胞吞噬清除。与细胞凋亡不同,坏死通常是由外部有害因素(如缺氧、物理或化学刺激)引起的,其表现为细胞器肿胀、细胞膜破裂,从而导致细胞内容物泄漏到周围组织,进而引发炎症反应和组织损伤[9]。铁死亡是一种氧化和铁依赖性的受控细胞死亡方式,通常由膜磷脂中多不饱和脂肪酸的脂质过氧化所引起。铁死亡的发生通常伴随着细胞膜的破裂和细胞内过量的氧化应激[10]。细胞焦亡首次于1992年在感染福氏志贺菌的巨噬细胞中被发现,并在2001年被确立为一种促炎性的程序性细胞死亡形式。其主要特征包括细胞肿胀、细胞膜破裂以及大量促炎性细胞因子的释放,从而引发强烈的炎症反应[11] [12]。细胞焦亡在生物体的生理与病理过程中具有重要功能,尤其在免疫反应、炎症反应及某些疾病的发生与发展中,发挥着至关重要的作用。

3. 细胞焦亡的分子机制

细胞焦亡作为一种促炎性细胞死亡方式,可以由多种细胞内或细胞外刺激激活,这些刺激包括细菌、病毒、毒素以及机械力等。其核心特征是由Gasdermin D (GSDMD)家族蛋白介导的细胞膜孔形成[13]。这个过程会导致细胞肿胀和细胞破裂,并伴随大量炎性细胞因子的释放,例如白细胞介素-1β (IL-1β)和白细胞介素-18 (IL-18)。这些促炎因子的释放进一步激活强烈的炎症反应,成为调控免疫反应的重要机制。研究表明细胞焦亡的生物学功能与多种疾病密切相关,包括阿尔茨海默病、神经退行性疾病、关节炎和心肌炎等。在这些疾病中,细胞焦亡通过调控局部炎症和免疫活性,对疾病的发生和进展产生深远的影响[14] [15]。细胞焦亡是一把双刃剑,一方面,适度的细胞焦亡有助于维持稳态,提高免疫活性,清除损伤和病原体以保护宿主[16] [17]。另一方面,细胞焦亡引起的过度炎症对宿主不利,可能加剧疾病的发展,从而释放各种炎症因子并形成炎症免疫微环境[16] [18]

根据不同的启动机制,细胞焦亡可分为两种主要类型:经典炎症小体途径和非经典炎症小体途径。经典途径依赖于Caspase-1的激活,而非经典途径则由Caspase-4、Caspase-5或Caspase-11触发[19]。在经典炎症小体途径中,Caspase-1的激活通常是通过识别模式识别受体(PRRs)以及病原体相关分子模式(PAMPs)或损伤相关分子模式(DAMPs)来实现[20] [21]

炎症小体作为一个由多种蛋白组成的复合体,在宿主防御和组织损伤修复中起着重要作用[22]。经典炎症小体包括Nod样受体(如NLRP1、NLRP3和NLRC4)以及AIM样受体(AIM2)等,其中,NLRP3是研究最为广泛的炎症小体之一,也是先天免疫系统的重要启动因子[23]。NLRP3的激活通常需要两个步骤:首先,启动信号由Toll样受体(TLR)识别微生物配体,激活转录因子NF-κB,从而促进pro-IL-1β、pro-IL-18和NLRP3蛋白的表达;其次,激活信号通过DAMPs或PAMPs的作用,促进NLRP3、pro-Caspase-1以及衔接蛋白ASC (Apoptosis-Associated Speck-Like Protein Containing a CARD)的组装,最终形成活化的炎症小体复合物[23]。在这种活化状态下,NLRP3炎症小体通过Caspase-1的催化作用,不仅促进IL-1β和IL-18的成熟与释放,还能够裂解Gasdermin D,释放其N末端结构域。该结构域嵌入细胞膜,形成孔隙,导致细胞内容物外泄,从而触发细胞焦亡并加剧炎症反应。NLRP3的激活机制十分复杂,涉及多种不同的刺激因素,这些因素可以引发包括离子通道激活(如Cl外流、K+外流、Ca2+内流)、溶酶体破坏、线粒体功能障碍、代谢变化、活性氧(ROS)生成以及线粒体DNA (mtDNA)释放等一系列分子和细胞反应[24]-[27]。这些上游信号被认为是炎症小体组装和激活的关键调控因素。NLRP3炎症小体在宿主抵御病原体侵袭和维持机体稳态方面至关重要,然而,其过度激活可能引发多种疾病,如关节炎和动脉粥样硬化等,成为慢性炎症性疾病的重要驱动因素[28] [29]。相比之下,非经典炎症小体途径的激活并不依赖于TLR信号传导,而是通过刺激物(如内毒素)直接进入细胞内,激活Caspase-4、Caspase-5或Caspase-11,这些酶随后裂解Gasdermin D,诱导细胞膜孔形成并引发细胞焦亡[30] [31]

4. 细胞焦亡与正畸牙移动的关系

NLRP3炎症小体的激活与细胞焦亡在正畸牙移动(OTM)和牙槽骨改建中起着重要作用。Cheng等研究表明,机械力能够显著诱导大鼠OTM和牙槽骨重建过程中焦亡相关标志物的表达[32]。通过调节细胞焦亡水平发现,这种调控对OTM和骨改建的影响存在显著差异:当阻断牙周膜祖细胞的焦亡时,牙齿移动和骨改建过程均被显著抑制;而增强细胞焦亡则有效促进了上述过程,这提示细胞焦亡水平对牙槽骨重塑具有重要调控作用。进一步研究发现,与野生型小鼠相比,Caspase-1基因敲除(Caspase-1-/-)小鼠的OTM距离显著减少,同时牙周组织中Caspase-1、GSDMD、IL-1β的表达水平和破骨细胞数量均明显降低。这表明机械力诱导的Caspase-1依赖性细胞焦亡对牙槽骨重塑具有双向调节功能。一方面,焦亡通过其促炎效应激活破骨细胞的功能;另一方面,炎症介导的组织重塑加速了骨吸收和新骨形成,从而进一步促进OTM和牙槽骨改建。类似地,Han等的研究显示NLRP3基因敲除(NLRP3-/-)小鼠的OTM距离明显缩短,牙周组织中的破骨细胞数量及破骨相关基因的表达水平均显著减少,这进一步表明了NLRP3炎症小体在正畸力作用下牙槽骨重塑中的关键作用[33]。然而,细胞焦亡的过度激活可能导致促炎程序的过度反应,甚至引发牙周组织损伤等不良后果。Zhang等研究发现在大鼠模型中,过量的正畸力可激活巨噬细胞中的NLRP3炎症小体,从而导致牙根吸收的发生[34]。机械力诱导NLRP3激活的机制较为复杂,部分离子通道可能在此过程中发挥作用。其中,TRPV4是一种典型的机械敏感通道,已有研究表明其与某些细胞焦亡相关疾病密切相关[35] [36]。最近的研究发现,TRPV4参与了机械力引发的牙周膜祖细胞焦亡,并可能通过促进细胞内Ca2+内流,导致线粒体损伤产生大量的ROS,进而激活了NLRP3来调节该过程。使用TRPV4抑制剂后,焦亡相关标志物的表达被部分抑制,同时Ca2+内流减少,ROS生成受到抑制[32]。此外,TRPV4抑制剂还逆转了机械力诱导的线粒体膜电位变化,并减轻了线粒体损伤。另有研究通过结合RNA测序发现,由TLR4/NFκB/NLRP3通路诱导的NLRP3激活可导致牙周膜细胞焦亡,可以直接促进破牙细胞形成以及牙根吸收[37]

总体来看,NLRP3炎症小体和细胞焦亡的相互作用可能对正畸治疗效果产生深远影响。NLRP3炎症小体通过调控炎性因子(如IL-1β和IL-18)的释放,影响牙槽骨吸收和重建;焦亡通过细胞膜孔隙的形成和炎性信号的扩散,为破骨细胞的招募和活化提供了必要的微环境。因此对这些机制的进一步研究有望为提高正畸治疗效果及减少副作用提供潜在的治疗靶点。

5. 小结与展望

目前,关于细胞焦亡与正畸牙移动的研究相对较少,其具体机制尚未完全阐明。然而,在OTM过程中,牙周组织内常形成缺氧微环境,在缺氧条件下,细胞主要通过无氧糖酵解提供能量以维持其活动。有研究发现在施加正畸力的磨牙周围,乳酸脱氢酶的表达和乳酸含量显著升高,这一现象表明机械力刺激可能导致细胞代谢方式的改变[38]。这些发现提示,细胞能量代谢的变化可能与细胞焦亡密切相关。缺氧环境下的代谢调节是否会通过影响炎症反应或细胞死亡信号来调控焦亡,仍有待进一步研究。因此,未来需要更深入地探索能量代谢与细胞焦亡之间的潜在联系,以揭示其在OTM和牙槽骨改建中的作用机制,这将为优化正畸治疗方案和开发新的干预策略提供重要的理论依据。

NOTES

*通讯作者。

参考文献

[1] Zhou, C., Duan, P., He, H., Song, J., Hu, M., Liu, Y., et al. (2024) Expert Consensus on Pediatric Orthodontic Therapies of Malocclusions in Children. International Journal of Oral Science, 16, Article No. 32.
https://doi.org/10.1038/s41368-024-00299-8
[2] Krishnan, V. and Davidovitch, Z. (2006) Cellular, Molecular, and Tissue-Level Reactions to Orthodontic Force. American Journal of Orthodontics and Dentofacial Orthopedics, 129, 469.e1-469.e32.
https://doi.org/10.1016/j.ajodo.2005.10.007
[3] Li, Y., Jacox, L.A., Little, S.H. and Ko, C. (2018) Orthodontic Tooth Movement: The Biology and Clinical Implications. The Kaohsiung Journal of Medical Sciences, 34, 207-214.
https://doi.org/10.1016/j.kjms.2018.01.007
[4] Pilon, J.J.G.M., Kuijpers-Jagtman, A.M. and Maltha, J.C. (1996) Magnitude of Orthodontic Forces and Rate of Bodily Tooth Movement. an Experimental Study. American Journal of Orthodontics and Dentofacial Orthopedics, 110, 16-23.
https://doi.org/10.1016/s0889-5406(96)70082-3
[5] Alikhani, M., Sangsuwon, C., Alansari, S., Nervina, J.M. and Teixeira, C.C. (2018) Biphasic Theory: Breakthrough Understanding of Tooth Movement. Journal of the World Federation of Orthodontists, 7, 82-88.
https://doi.org/10.1016/j.ejwf.2018.08.001
[6] Hao, W. and Feng, C. (2023) Research Progress on Pyroptosis and Its Effect on the Central Nervous System. Neurobiology of Disease, 188, Article 106333.
https://doi.org/10.1016/j.nbd.2023.106333
[7] Song, Y., Peng, Y., Wang, B., Zhou, X., Cai, Y., Chen, H., et al. (2024) The Roles of Pyroptosis in the Pathogenesis of Autoimmune Diseases. Life Sciences, 359, Article 123232.
https://doi.org/10.1016/j.lfs.2024.123232
[8] Newton, K., Strasser, A., Kayagaki, N. and Dixit, V.M. (2024) Cell Death. Cell, 187, 235-256.
https://doi.org/10.1016/j.cell.2023.11.044
[9] He, S., Liang, Y., Shao, F. and Wang, X. (2011) Toll-Like Receptors Activate Programmed Necrosis in Macrophages through a Receptor-Interacting Kinase-3-Mediated Pathway. Proceedings of the National Academy of Sciences, 108, 20054-20059.
https://doi.org/10.1073/pnas.1116302108
[10] Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421.
https://doi.org/10.1016/j.cell.2022.06.003
[11] Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169.
https://doi.org/10.1038/358167a0
[12] Forterre, P. (2001) New Viruses for the New Millennium. Trends in Microbiology, 9, 114.
https://doi.org/10.1016/s0966-842x(00)01944-2
[13] Yuan, J. and Ofengeim, D. (2023) A Guide to Cell Death Pathways. Nature Reviews Molecular Cell Biology, 25, 379-395.
https://doi.org/10.1038/s41580-023-00689-6
[14] Tan, M., Tan, L., Jiang, T., Zhu, X., Wang, H., Jia, C., et al. (2014) Amyloid-β Induces Nlrp1-Dependent Neuronal Pyroptosis in Models of Alzheimer’s Disease. Cell Death & Disease, 5, e1382.
https://doi.org/10.1038/cddis.2014.348
[15] Adamczak, S.E., de Rivero Vaccari, J.P., Dale, G., Brand, F.J., Nonner, D., Bullock, M., et al. (2014) Pyroptotic Neuronal Cell Death Mediated by the AIM2 Inflammasome. Journal of Cerebral Blood Flow & Metabolism, 34, 621-629.
https://doi.org/10.1038/jcbfm.2013.236
[16] Zhang, Z. (2020) Gasdermin E Suppresses Tumour Growth by Activating Anti-Tumour Immunity. Nature, 579, 415-420.
[17] Tang, R., Xu, J., Zhang, B., Liu, J., Liang, C., Hua, J., et al. (2020) Ferroptosis, Necroptosis, and Pyroptosis in Anticancer Immunity. Journal of Hematology & Oncology, 13, Article No. 110.
https://doi.org/10.1186/s13045-020-00946-7
[18] Wang, Q., Wang, Y., Ding, J., Wang, C., Zhou, X., Gao, W., et al. (2020) A Bioorthogonal System Reveals Antitumour Immune Function of Pyroptosis. Nature, 579, 421-426.
https://doi.org/10.1038/s41586-020-2079-1
[19] Zhou, R., Yang, X., Li, X., Qu, Y., Huang, Q., Sun, X., et al. (2019) Recombinant CC16 Inhibits NLRP3/Caspase-1-Induced Pyroptosis through P38 MAPK and ERK Signaling Pathways in the Brain of a Neonatal Rat Model with Sepsis. Journal of Neuroinflammation, 16, Article No. 239.
https://doi.org/10.1186/s12974-019-1651-9
[20] Wu, C., Lu, W., Zhang, Y., et al. (2019) Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity, 50, 1401-1411.
[21] Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., et al. (2016) Pore-Forming Activity and Structural Autoinhibition of the Gasdermin Family. Nature, 535, 111-116.
https://doi.org/10.1038/nature18590
[22] Huang, Y., Xu, W. and Zhou, R. (2021) NLRP3 Inflammasome Activation and Cell Death. Cellular & Molecular Immunology, 18, 2114-2127.
https://doi.org/10.1038/s41423-021-00740-6
[23] Jo, E., Kim, J.K., Shin, D. and Sasakawa, C. (2015) Molecular Mechanisms Regulating NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 13, 148-159.
https://doi.org/10.1038/cmi.2015.95
[24] Tang, T., Lang, X., Xu, C., Wang, X., Gong, T., Yang, Y., et al. (2017) CLICs-Dependent Chloride Efflux Is an Essential and Proximal Upstream Event for NLRP3 Inflammasome Activation. Nature Communications, 8, Article No. 202.
https://doi.org/10.1038/s41467-017-00227-x
[25] Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, 38, 1142-1153.
https://doi.org/10.1016/j.immuni.2013.05.016
[26] Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2010) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225.
https://doi.org/10.1038/nature09663
[27] Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Hofer, A.M., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences, 109, 11282-11287.
https://doi.org/10.1073/pnas.1117765109
[28] Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., et al. (2020) NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Medicine and Cellular Longevity, 2020, 1-11.
https://doi.org/10.1155/2020/4063562
[29] Tourkochristou, E., Aggeletopoulou, I., Konstantakis, C. and Triantos, C. (2019) Role of NLRP3 Inflammasome in Inflammatory Bowel Diseases. World Journal of Gastroenterology, 25, 4796-4804.
https://doi.org/10.3748/wjg.v25.i33.4796
[30] Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665.
https://doi.org/10.1038/nature15514
[31] He, W., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., et al. (2015) Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell Research, 25, 1285-1298.
https://doi.org/10.1038/cr.2015.139
[32] Chen, L., Yu, H., Li, Z., Wang, Y., Jin, S., Yu, M., et al. (2024) Force-Induced Caspase-1-Dependent Pyroptosis Regulates Orthodontic Tooth Movement. International Journal of Oral Science, 16, Article No. 3.
https://doi.org/10.1038/s41368-023-00268-7
[33] Han, Y., Yang, Q., Huang, Y., Gao, P., Jia, L., Zheng, Y., et al. (2022) Compressive Force Regulates Orthodontic Tooth Movement via Activating the NLRP3 Inflammasome. The FASEB Journal, 36, e22627.
https://doi.org/10.1096/fj.202200447rr
[34] Zhang, J., Liu, X., Wan, C., Liu, Y., Wang, Y., Meng, C., et al. (2020) NLRP3 Inflammasome Mediates M1 Macrophage Polarization and Il‐1β Production in Inflammatory Root Resorption. Journal of Clinical Periodontology, 47, 451-460.
https://doi.org/10.1111/jcpe.13258
[35] Comellas, E., Farkas, J.E., Kleinberg, G., Lloyd, K., Mueller, T., Duerr, T.J., et al. (2022) Local Mechanical Stimuli Correlate with Tissue Growth in Axolotl Salamander Joint Morphogenesis. Proceedings of the Royal Society B: Biological Sciences, 289, Article 20220621.
https://doi.org/10.1098/rspb.2022.0621
[36] Rao, Y., Gai, X., Xiong, J., Le, Y. and Sun, Y. (2021) Transient Receptor Potential Cation Channel Subfamily V Member 4 Mediates Pyroptosis in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article 783891.
https://doi.org/10.3389/fphys.2021.783891
[37] Li, X., Men, X., Ji, L., Chen, X., He, S., Zhang, P., et al. (2024) NLRP3-Mediated Periodontal Ligament Cell Pyroptosis Promotes Root Resorption. Journal of Clinical Periodontology, 51, 474-486.
https://doi.org/10.1111/jcpe.13914
[38] Zhai, M., Cui, S., Li, L., Cheng, C., Zhang, Z., Liu, J., et al. (2022) Mechanical Force Modulates Alveolar Bone Marrow Mesenchymal Cells Characteristics for Bone Remodeling during Orthodontic Tooth Movement through Lactate Production. Cells, 11, Article 3724.
https://doi.org/10.3390/cells11233724

Baidu
map