[1] |
Zhou, C., Duan, P., He, H., Song, J., Hu, M., Liu, Y., et al. (2024) Expert Consensus on Pediatric Orthodontic Therapies of Malocclusions in Children. International Journal of Oral Science, 16, Article No. 32. https://doi.org/10.1038/s41368-024-00299-8 |
[2] |
Krishnan, V. and Davidovitch, Z. (2006) Cellular, Molecular, and Tissue-Level Reactions to Orthodontic Force. American Journal of Orthodontics and Dentofacial Orthopedics, 129, 469.e1-469.e32. https://doi.org/10.1016/j.ajodo.2005.10.007 |
[3] |
Li, Y., Jacox, L.A., Little, S.H. and Ko, C. (2018) Orthodontic Tooth Movement: The Biology and Clinical Implications. The Kaohsiung Journal of Medical Sciences, 34, 207-214. https://doi.org/10.1016/j.kjms.2018.01.007 |
[4] |
Pilon, J.J.G.M., Kuijpers-Jagtman, A.M. and Maltha, J.C. (1996) Magnitude of Orthodontic Forces and Rate of Bodily Tooth Movement. an Experimental Study. American Journal of Orthodontics and Dentofacial Orthopedics, 110, 16-23. https://doi.org/10.1016/s0889-5406(96)70082-3 |
[5] |
Alikhani, M., Sangsuwon, C., Alansari, S., Nervina, J.M. and Teixeira, C.C. (2018) Biphasic Theory: Breakthrough Understanding of Tooth Movement. Journal of the World Federation of Orthodontists, 7, 82-88. https://doi.org/10.1016/j.ejwf.2018.08.001 |
[6] |
Hao, W. and Feng, C. (2023) Research Progress on Pyroptosis and Its Effect on the Central Nervous System. Neurobiology of Disease, 188, Article 106333. https://doi.org/10.1016/j.nbd.2023.106333 |
[7] |
Song, Y., Peng, Y., Wang, B., Zhou, X., Cai, Y., Chen, H., et al. (2024) The Roles of Pyroptosis in the Pathogenesis of Autoimmune Diseases. Life Sciences, 359, Article 123232. https://doi.org/10.1016/j.lfs.2024.123232 |
[8] |
Newton, K., Strasser, A., Kayagaki, N. and Dixit, V.M. (2024) Cell Death. Cell, 187, 235-256. https://doi.org/10.1016/j.cell.2023.11.044 |
[9] |
He, S., Liang, Y., Shao, F. and Wang, X. (2011) Toll-Like Receptors Activate Programmed Necrosis in Macrophages through a Receptor-Interacting Kinase-3-Mediated Pathway. Proceedings of the National Academy of Sciences, 108, 20054-20059. https://doi.org/10.1073/pnas.1116302108 |
[10] |
Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421. https://doi.org/10.1016/j.cell.2022.06.003 |
[11] |
Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169. https://doi.org/10.1038/358167a0 |
[12] |
Forterre, P. (2001) New Viruses for the New Millennium. Trends in Microbiology, 9, 114. https://doi.org/10.1016/s0966-842x(00)01944-2 |
[13] |
Yuan, J. and Ofengeim, D. (2023) A Guide to Cell Death Pathways. Nature Reviews Molecular Cell Biology, 25, 379-395. https://doi.org/10.1038/s41580-023-00689-6 |
[14] |
Tan, M., Tan, L., Jiang, T., Zhu, X., Wang, H., Jia, C., et al. (2014) Amyloid-β Induces Nlrp1-Dependent Neuronal Pyroptosis in Models of Alzheimer’s Disease. Cell Death & Disease, 5, e1382. https://doi.org/10.1038/cddis.2014.348 |
[15] |
Adamczak, S.E., de Rivero Vaccari, J.P., Dale, G., Brand, F.J., Nonner, D., Bullock, M., et al. (2014) Pyroptotic Neuronal Cell Death Mediated by the AIM2 Inflammasome. Journal of Cerebral Blood Flow & Metabolism, 34, 621-629. https://doi.org/10.1038/jcbfm.2013.236 |
[16] |
Zhang, Z. (2020) Gasdermin E Suppresses Tumour Growth by Activating Anti-Tumour Immunity. Nature, 579, 415-420. |
[17] |
Tang, R., Xu, J., Zhang, B., Liu, J., Liang, C., Hua, J., et al. (2020) Ferroptosis, Necroptosis, and Pyroptosis in Anticancer Immunity. Journal of Hematology & Oncology, 13, Article No. 110. https://doi.org/10.1186/s13045-020-00946-7 |
[18] |
Wang, Q., Wang, Y., Ding, J., Wang, C., Zhou, X., Gao, W., et al. (2020) A Bioorthogonal System Reveals Antitumour Immune Function of Pyroptosis. Nature, 579, 421-426. https://doi.org/10.1038/s41586-020-2079-1 |
[19] |
Zhou, R., Yang, X., Li, X., Qu, Y., Huang, Q., Sun, X., et al. (2019) Recombinant CC16 Inhibits NLRP3/Caspase-1-Induced Pyroptosis through P38 MAPK and ERK Signaling Pathways in the Brain of a Neonatal Rat Model with Sepsis. Journal of Neuroinflammation, 16, Article No. 239. https://doi.org/10.1186/s12974-019-1651-9 |
[20] |
Wu, C., Lu, W., Zhang, Y., et al. (2019) Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity, 50, 1401-1411. |
[21] |
Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., et al. (2016) Pore-Forming Activity and Structural Autoinhibition of the Gasdermin Family. Nature, 535, 111-116. https://doi.org/10.1038/nature18590 |
[22] |
Huang, Y., Xu, W. and Zhou, R. (2021) NLRP3 Inflammasome Activation and Cell Death. Cellular & Molecular Immunology, 18, 2114-2127. https://doi.org/10.1038/s41423-021-00740-6 |
[23] |
Jo, E., Kim, J.K., Shin, D. and Sasakawa, C. (2015) Molecular Mechanisms Regulating NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 13, 148-159. https://doi.org/10.1038/cmi.2015.95 |
[24] |
Tang, T., Lang, X., Xu, C., Wang, X., Gong, T., Yang, Y., et al. (2017) CLICs-Dependent Chloride Efflux Is an Essential and Proximal Upstream Event for NLRP3 Inflammasome Activation. Nature Communications, 8, Article No. 202. https://doi.org/10.1038/s41467-017-00227-x |
[25] |
Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, 38, 1142-1153. https://doi.org/10.1016/j.immuni.2013.05.016 |
[26] |
Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2010) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225. https://doi.org/10.1038/nature09663 |
[27] |
Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Hofer, A.M., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences, 109, 11282-11287. https://doi.org/10.1073/pnas.1117765109 |
[28] |
Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., et al. (2020) NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Medicine and Cellular Longevity, 2020, 1-11. https://doi.org/10.1155/2020/4063562 |
[29] |
Tourkochristou, E., Aggeletopoulou, I., Konstantakis, C. and Triantos, C. (2019) Role of NLRP3 Inflammasome in Inflammatory Bowel Diseases. World Journal of Gastroenterology, 25, 4796-4804. https://doi.org/10.3748/wjg.v25.i33.4796 |
[30] |
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665. https://doi.org/10.1038/nature15514 |
[31] |
He, W., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., et al. (2015) Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell Research, 25, 1285-1298. https://doi.org/10.1038/cr.2015.139 |
[32] |
Chen, L., Yu, H., Li, Z., Wang, Y., Jin, S., Yu, M., et al. (2024) Force-Induced Caspase-1-Dependent Pyroptosis Regulates Orthodontic Tooth Movement. International Journal of Oral Science, 16, Article No. 3. https://doi.org/10.1038/s41368-023-00268-7 |
[33] |
Han, Y., Yang, Q., Huang, Y., Gao, P., Jia, L., Zheng, Y., et al. (2022) Compressive Force Regulates Orthodontic Tooth Movement via Activating the NLRP3 Inflammasome. The FASEB Journal, 36, e22627. https://doi.org/10.1096/fj.202200447rr |
[34] |
Zhang, J., Liu, X., Wan, C., Liu, Y., Wang, Y., Meng, C., et al. (2020) NLRP3 Inflammasome Mediates M1 Macrophage Polarization and Il‐1β Production in Inflammatory Root Resorption. Journal of Clinical Periodontology, 47, 451-460. https://doi.org/10.1111/jcpe.13258 |
[35] |
Comellas, E., Farkas, J.E., Kleinberg, G., Lloyd, K., Mueller, T., Duerr, T.J., et al. (2022) Local Mechanical Stimuli Correlate with Tissue Growth in Axolotl Salamander Joint Morphogenesis. Proceedings of the Royal Society B: Biological Sciences, 289, Article 20220621. https://doi.org/10.1098/rspb.2022.0621 |
[36] |
Rao, Y., Gai, X., Xiong, J., Le, Y. and Sun, Y. (2021) Transient Receptor Potential Cation Channel Subfamily V Member 4 Mediates Pyroptosis in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article 783891. https://doi.org/10.3389/fphys.2021.783891 |
[37] |
Li, X., Men, X., Ji, L., Chen, X., He, S., Zhang, P., et al. (2024) NLRP3-Mediated Periodontal Ligament Cell Pyroptosis Promotes Root Resorption. Journal of Clinical Periodontology, 51, 474-486. https://doi.org/10.1111/jcpe.13914 |
[38] |
Zhai, M., Cui, S., Li, L., Cheng, C., Zhang, Z., Liu, J., et al. (2022) Mechanical Force Modulates Alveolar Bone Marrow Mesenchymal Cells Characteristics for Bone Remodeling during Orthodontic Tooth Movement through Lactate Production. Cells, 11, Article 3724. https://doi.org/10.3390/cells11233724 |