[1] |
李德鸿. 不要把尘肺病防治引入歧途[J]. 环境与职业医学, 2018, 35(4): 283-285. |
[2] |
中华人民共和国国家卫生健康委员会. GBZ70-2015职业性尘肺病的诊断[S]. 2015. |
[3] |
国家卫生健康委员会. 2022年4月25日新闻发布会文字实录[EB/OL]. http://www.nhc.gov.cn/xcs/s3574/202204/2fbf355668df4fd0ade8b5c3cf455f95.shtml, 2022-04-26. |
[4] |
王峥, 张建芳, 钱青俊. 我国职业性尘肺病诊断标准的演变和发展[J]. 中国工业医学杂志, 2017(1): 69-71. |
[5] |
鲁洋, 刘拓, 朱秋鸿. 我国职业病诊断标准应用情况调查[J]. 中国卫生标准管理, 2022, 13(13): 1-5. |
[6] |
胡莲花, 李辉, 盛秋洁. 2013-2023年深圳市职业病防治院尘肺病筛查诊断情况研究[J/OL]. 中国典型病例大全, 2024, 18(4): 80-86. |
[7] |
Pham, Q.T. (2001) Chest Radiography in the Diagnosis of Pneumoconiosis. The International Journal of Tuberculosis and Lung Disease, 5, 478-482. |
[8] |
Leonard, J.F. and Templeton, P.A. (1992) Pulmonary Imaging Techniques in the Diagnosis of Occupational Interstitial Lung Disease. Occupational Medicine, 7, 241-260. |
[9] |
Cullinan, P., Muñoz, X., Suojalehto, H., Agius, R., Jindal, S., Sigsgaard, T., et al. (2017) Occupational Lung Diseases: From Old and Novel Exposures to Effective Preventive Strategies. The Lancet Respiratory Medicine, 5, 445-455. https://doi.org/10.1016/s2213-2600(16)30424-6 |
[10] |
Hering, K., Borsch-Galetke, E., Elliehausen, H., Frank, K., Hieckel, H., Hofmann-Preiß, K., et al. (2009) Digitale Radiografie in der Untersuchung von arbeits-und umweltbedingten Lungen-und Pleuraerkrankungen. Pneumologie, 63, 664-668. https://doi.org/10.1055/s-0029-1215110 |
[11] |
Lee, W. and Choi, B. (2012) Utility of Digital Radiography for the Screening of Pneumoconiosis as Compared to Analog Radiography. Health Physics, 103, 64-69. https://doi.org/10.1097/hp.0b013e318249ac5d |
[12] |
Suganuma, N., Yoshida, S., Takeuchi, Y., Nomura, Y.K. and Suzuki, K. (2023) Artificial Intelligence in Quantitative Chest Imaging Analysis for Occupational Lung Disease. Seminars in Respiratory and Critical Care Medicine, 44, 362-369. https://doi.org/10.1055/s-0043-1767760 |
[13] |
Chen, J.Q., Jiang, Z.Q., Xiao, Y., Zhao, Y.W. and Zhang, X. (2012) The Analysis of Consistency between Digital Radiography and High-KV Chest Radiographs in Diagnosis Pneumoconiosis. Chinese Journal of Industrial Hygiene and Occupational Diseases, 30, 8-12. |
[14] |
曾刘桃, 陈钧强, 蒋兆强. 尘肺病影像学诊断的研究进展[J]. 预防医学, 2021, 33(12): 1236-1239. |
[15] |
王峥. 计算机辅助诊断在尘肺病诊断中的应用[J]. 世界最新医学信息文摘, 2019, 19(8): 78-79. |
[16] |
ILO (2023) ILO International Classification of Radiographs of Pneumoconioses. https://www.ilo.org/resource/ilo-international-classification-radiographs-pneumoconioses-1 |
[17] |
曲良勇, 苑翠红, 钮建武, 刘靖. 数字X射线摄影在尘肺筛查中的应用研究[J]. 中国辐射卫生, 2018, 27(5): 507-510. |
[18] |
Xia, L., Lü, F., Wang, Y., Sheng, B. and Zhou, S. (2012) Compute Tomography-Based Quantitative Evaluation of Pneumoconiosis. Journal of Southern Medical University, 32, 1768-1772. |
[19] |
Hu, X., Zhou, R., Hu, M., Wen, J. and Shen, T. (2022) Differentiation and Prediction of Pneumoconiosis Stage by Computed Tomography Texture Analysis Based on U-Net Neural Network. Computer Methods and Programs in Biomedicine, 225, Article 107098. https://doi.org/10.1016/j.cmpb.2022.107098 |
[20] |
Zhang, X., Kusaka, Y. and Ishii, Y. (1995) Computed Tomography of Pneumoconiosis. Sangyo Eiseigaku Zasshi, 37, 321-328. https://doi.org/10.1539/sangyoeisei.37.5_321 |
[21] |
Franquet, T., Giménez, A. and Díaz, C. (2017) Asbestos-Related Diseases: The Role of Imaging. Radiographics, 37, 1883-1902. |
[22] |
王振光, 马大庆, 陈步东, 贺文, 王新莲, 刘大亮. 容积数据高分辨率CT重组在弥漫性肺疾病中的应用[J]. 中华放射学杂志, 2005, 39(11): 1153-1156. |
[23] |
夏艺, 管宇, 范丽, 等. 高分辨率CT容积定量技术在慢性阻塞性肺疾病中的应用研究[J]. 医学影像学杂志, 2013, 23(8): 1219-1222. |
[24] |
程雪菲. 《胸部CT诊断》出版: 胸部高分辨率CT技术的临床应用探讨[J]. 介入放射学杂志, 2021, 30(12): 13-32. |
[25] |
周绍权, 夏露花, 吕富荣. 早期尘肺HRCT影像学表现及优势[J]. 重庆医学, 2013, 42(11): 1305-1307. |
[26] |
金盛辉, 柳澄, 王焕强. 尘肺病胸部CT规范化检查技术专家共识(2020年版) [J]. 环境与职业医学, 2020, 37(10): 943-949. |
[27] |
中国疾病预防控制中心. T/WSJD 32-2023胸部CT辅助诊断尘肺病技术指南[EB/OL]. https://www.medsci.cn/guideline/show_article.do?id=21d1e1c0030e09d2, 2024-12-19. |
[28] |
中国卫生监督协会. 胸部CT辅助诊断尘肺病技术指南[T/WSJD32-2023] [EB/OL]. https://niohp.chinacdc.cn/sndt/202303/P020230330351513611430.pdf, 2024-12-19. |
[29] |
Rajkomar, A., Lingam, S., Taylor, A.G., Blum, M. and Mongan, J. (2016) High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. Journal of Digital Imaging, 30, 95-101. https://doi.org/10.1007/s10278-016-9914-9 |
[30] |
Wang, X., Yu, J., Zhu, Q., Li, S., Zhao, Z., Yang, B., et al. (2020) Potential of Deep Learning in Assessing Pneumoconiosis Depicted on Digital Chest Radiography. Occupational and Environmental Medicine, 77, 597-602. https://doi.org/10.1136/oemed-2019-106386 |
[31] |
Savranlar, A., Altın, R., Mahmutyazıcıoğlu, K., Özdemir, H., Kart, L., Özer, T., et al. (2004) Comparison of Chest Radiography and High-Resolution Computed Tomography Findings in Early and Low-Grade Coal Worker’s Pneumoconiosis. European Journal of Radiology, 51, 175-180. https://doi.org/10.1016/j.ejrad.2003.10.017 |
[32] |
王宁宁, 靳毅, 王成霞, 等. 尘肺病影像学及AI辅助诊断技术的研究进展[J]. 职业与健康, 2024, 40(6): 851-855. |
[33] |
Sakai, M., Murayama, S., Gibo, M., Akamine, T., Yoshinaga, M., Iraha, S., et al. (2005) Can Maximum Intensity Projection Images with Multidetector-Row Computed Tomography Help to Differentiate between the Micronodular Distribution of Focal and Diffuse Infiltrative Lung Diseases? Journal of Computer Assisted Tomography, 29, 588-591. https://doi.org/10.1097/01.rct.0000175710.98923.a2 |
[34] |
Preisser, A.M., Schlemmer, K., Herold, R., Laqmani, A., Terschüren, C. and Harth, V. (2020) Relations between Vital Capacity, CO Diffusion Capacity and Computed Tomographic Findings of Former Asbestos-Exposed Patients: A Cross-Sectional Study. Journal of Occupational Medicine and Toxicology, 15, Article No. 21. https://doi.org/10.1186/s12995-020-00272-1 |
[35] |
Manners, D., Wong, P., Murray, C., Teh, J., Kwok, Y.J., de Klerk, N., et al. (2017) Correlation of Ultra-Low Dose Chest CT Findings with Physiologic Measures of Asbestosis. European Radiology, 27, 3485-3490. https://doi.org/10.1007/s00330-016-4722-7 |
[36] |
Ludes, C., Schaal, M., Labani, A., Jeung, M., Roy, C. and Ohana, M. (2016) Scanner Thoracique Ultra-Basse Dose: La mort de la radiographie thoracique? La Presse Médicale, 45, 291-301. https://doi.org/10.1016/j.lpm.2015.12.003 |
[37] |
李继生. 尘肺病影像学诊断的研究进展[J]. 中国农村卫生, 2024, 16(9): 22. |
[38] |
张敏, 陈钧强. 人工智能技术在尘肺病诊断中的应用研究进展[J]. 环境与职业医学, 2020, 37(2): 192-196. |
[39] |
Zhang, L., Rong, R., Li, Q., Yang, D.M., Yao, B., Luo, D., et al. (2021) A Deep Learning-Based Model for Screening and Staging Pneumoconiosis. Scientific Reports, 11, Article 2201. https://doi.org/10.1038/s41598-020-77924-z |
[40] |
王峥, 贺文. 深度残差网络在尘肺病诊断中的应用初探[J]. 中国工业医学, 2019, 32(1): 31-33. |
[41] |
Costantini, L.M., Gilberti, R.M. and Knecht, D.A. (2011) The Phagocytosis and Toxicity of Amorphous Silica. PLOS ONE, 6, e14647. https://doi.org/10.1371/journal.pone.0014647 |
[42] |
Privalova, L.I., Katsnelson, B.A., Sharapova, N.Y. and Kislitsina, N.S. (1995) On the Relationship between Activation and Breakdown of Macrophages in the Pathogenesis of Silicosis (An Overview). La Medicina del Lavoro, 86, 511-521. |
[43] |
Ates, I., Yucesoy, B., Yucel, A., Suzen, S.H., Karakas, Y. and Karakaya, A. (2011) Possible Effect of Gene Polymorphisms on the Release of TNFα and IL1 Cytokines in Coal Workers’ Pneumoconiosis. Experimental and Toxicologic Pathology, 63, 175-179. https://doi.org/10.1016/j.etp.2009.11.006 |
[44] |
闫鑫华, 户元元, 田燕歌. 职业性尘肺病相关生物标志物研究进展[J]. 中国职业医学, 2022, 49(3): 355-360. |
[45] |
代静, 彭方达, 吴智君, 等. 粉尘接触人群生物监测研究进展[J]. 中国职业医学, 2024, 51(1): 105-110+115. |
[46] |
吴玛莉, 张涛, 陈燕. 职业性尘肺病生物标志物研究进展[J]. 中国职业医学, 2022, 49(1): 101-105+110. |
[47] |
寇杰. 基质金属蛋白酶基因多态性与尘肺易感性研究[D]: [硕士学位论文]. 秦皇岛: 华北理工大学, 2015. |
[48] |
Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., et al. (2020) The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences, 21, Article 9739. https://doi.org/10.3390/ijms21249739 |
[49] |
徐海明, 刘科良, 郝艳星, 等. 生物标志物的联合检测对矽肺早期辅助诊断的价值[J]. 癌变·畸变·突变, 2020, 32(5): 395-397+401. |