非侵入性多模态监测在神经重症监护中的应用:近期进展与临床实践综述
Application of Noninvasive Multimodal Monitoring in Neurocritical Care: A Comprehensive Review of Recent Advances and Clinical Applications
DOI: 10.12677/md.2025.151011, PDF, HTML, XML,   
作者: 李 哲, 张晓娜, 纪明燕, 王壮玮:承德医学院研究生学院,河北 承德;邯郸市中心医院重症医学科,河北 邯郸;刘波, 李彤, 付玉馨, 吴亭亭, 王景梅*:邯郸市中心医院重症医学科,河北 邯郸
关键词: 多模态监测神经重症急性颅脑损伤颅内压脑氧合脑血流Multimodal Monitoring Neurocritical Care Acute Brain Injury Intracranial Pressure Cerebral Oximetry Cerebral Blood Flow
摘要: 本综述阐述了非侵入性多模态监测(Multimodality Monitoring, MMM)在神经重症患者中的应用进展。随着医疗技术的发展,非侵入性MMM已成为神经重症监护中不可或缺的工具,它通过整合脑氧合、脑代谢、脑血流等多个参数,为重型急性颅脑损伤患者的治疗提供全面支持。研究内容包括非侵入性MMM的理论框架、临床实践、发展前景以及应用过程中可能遇到的问题。文章预期明确非侵入性MMM在急性重症颅脑损伤患者治疗中的重要性,探讨其在提升患者生存率和生活质量方面的贡献,并提出解决方案以保障监测技术的高效和可信。通过全面评估,文章旨在为重症医学科(Intensive Care Unit, ICU)及相关医疗人员提供实践指导和参考信息,以优化神经重症患者的治疗和管理。
Abstract: This review discusses the advancements in the application of noninvasive multimodality monitoring (MMM) in neurocritical care patients. With the evolution of medical technology, noninvasive MMM has become an indispensable tool in neurocritical care, providing comprehensive support for the treatment of patients with severe acute brain injuries by integrating multiple parameters such as cerebral oxygenation, brain metabolism, and cerebral blood flow. The study includes the theoretical framework, clinical practice, future development prospects, and potential issues encountered during the application of noninvasive MMM. This article aims to clarify the importance of noninvasive MMM in the treatment of patients with acute severe brain injuries, explore its contribution to improving patient survival rates and quality of life, and propose solutions to ensure the efficiency and reliability of monitoring technology. Through a comprehensive assessment, this paper intends to provide practical guidance and reference information for ICU and related medical staff to optimize the treatment and management of neurocritical care patients.
文章引用:李哲, 张晓娜, 纪明燕, 王壮玮, 刘波, 李彤, 付玉馨, 吴亭亭, 王景梅. 非侵入性多模态监测在神经重症监护中的应用:近期进展与临床实践综述[J]. 医学诊断, 2025, 15(1): 77-85. https://doi.org/10.12677/md.2025.151011

1. 引言

自20世纪末期设立以来,重症医学科(Intensive Care Unit, ICU)随着医学科技的迅猛发展,始终致力于研究与创新,以实现对患者的精细监测和提供更加精确、高效的临床治疗方案[1]。随着人民生活水平提高,人均机动车拥有量增加[2],营养状况改善以及生活作息的转变,颅脑外伤、缺血性和出血性脑血管疾病等的发病率不断上升,加之临床诊断手段的进步,急性重症颅脑损伤逐渐成为一种常见的临床急症。其病情复杂且变化迅速,对患者的生命安全、经济状况及预后构成严重威胁[3]。在医疗技术不断发展的背景下,如何准确、全面地评估患者的病情,为临床治疗提供有力支持,已成为神经重症领域关注的焦点[4] [5]

临床监测手段丰富,总体分为侵入性与非侵入性监测。侵入性监测容易在不同方面对患者造成损伤和干扰,非侵入性监测则相对刺激较小、安全,所以在感染易发的ICU环境中,应用非侵入性监测的优势较大。非侵入性多模态监测(Multimodality Monitoring, MMM)作为一种综合、全面的监测手段,在重型急性颅脑损伤患者的治疗活动中展现出较高的临床应用价值[5] [6]。非侵入性MMM包括脑氧合、脑电生理及脑血流等,能够为实现精准、全面的病情管理目标提供技术支持[7]

本研究目的在于评价非侵入性MMM在临床治疗中的应用价值,包括其益处与局限性,为医疗决策提供科学依据。研究内容将涵盖非侵入性MMM的理论框架、临床实践、发展前景。通过全面的评估,预期能够明确非侵入性MMM在急性重症颅脑损伤患者治疗中的重要性,以及其在协助医疗团队改进治疗策略、提升患者生存率和生活质量方面的贡献。

2. 脑血流监测

脑血流是氧供给和营养供给的基础,经多年发展,ICU对脑血流监测的管理逐渐成熟。原发性和继发性损伤在病理生理学机制不同,但对脑实质造成损伤的途径有重合部分,其中,继发性脑损伤通常是由脑血流变化引起的[8]。越来越多的ICU医生应用经颅多普勒超声(Transcranial Doppler, TCD)与经颅彩色多普勒血流成像(Transcranial Color Coded Doppler, TCCD)来及时、有效监测患者的脑血流速度、波形等参数,以此指导临床治疗。

其中,TCD作为一种经济、无创的床边监测技术,为临床医生提供实时评估脑血流动力学变化的技术手段[9] [10]。TCD能够利用低频超声探头穿透颅骨较薄或自然孔道的区域,包括经颞、经眶、枕下和下颌下窗,以测量脑血流速度的相对变化。TCD在诊断急性缺血性卒中、蛛网膜下腔出血伴随的脑血管痉挛、外伤性脑损伤等多种脑血管疾病方面显示出高效性和可靠性,同时也可以用来辅助进行脑死亡评估。与传统血管造影相比,TCD在监测大脑中动脉和基底动脉血管痉挛方面具有高特异性和敏感性,但对血管痉挛部位的远端敏感性不足[9] [11]

根据伯努利原理,血管直径的减小会导致流速增加和压力降低。TCD通过监测流速的增加来识别血管痉挛,其中血流速度 > 120 cm/s指示轻度血管痉挛(<25%),而>200 cm/s则指示严重血管痉挛(>50%),基底动脉血流速度 > 85 cm/s也被认为与中度至重度血管痉挛相关[12] [13]。为区分血管痉挛和充血,可以计算Lindegaard Ratio (LR),即大脑中动脉与颈内动脉的平均速度比值,比率 > 3更符合血管痉挛[14]。此外,TCD还能通过监测脑血流变化的特征模式和搏动指数(Pulsatility Index, PI)的增加来预测颅内压(Intracranial Pressure, ICP)的升高[15]。其参数包括:平均血流速度(Mean-Flow Velocity, MFV),峰收缩期速度(Peak-Systolic Velocity, PSV),舒张末期速度(End-Diastolic Velocity, EDV)。PI等于(PSV-EDV)/MFV,是评估下游血管阻力的替代指标,其正常值通常在0.5到1.19之间[16]。研究表明,PI数值与ICP在15 mmHg到40 mmHg之间存在显著的线性关系,且有公式将PI转换为ICP,具有较高的灵敏度和特异性[17] [18]

TCD在急性缺血性脑卒中患者的诊断和治疗中也具有重要应用前景[19] [20]。但TCD的准确性受到操作者技能的影响,且对脑血管的直接观察有限。此外,老年女性中声窗的缺乏可能限制TCD的应用[21]。TCD是一种有效的监测工具,为脑血管疾病的MMM提供宝贵的信息,但需要与其他诊断方法结合使用,以减少操作者技术水平及个体差异的干扰[9]

TCCD与TCD原理类似,但其能够结合二维灰阶实时显像、彩色多普勒血流显像和多普勒频谱分析技术,使得操作者能够更准确地识别观察的血管,跟踪血管走向,并根据血流方向与超声束所成的角度校正血流速度,从而得出更准确的颅内血管血流动力学的详细信息[22] [23]。TCCD作为一种便捷、可重复性强的神经影像技术,在重症医学科的临床应用中发挥着越来越重要的作用。

临床实践中TCCD不仅能够提供比传统TCD更精确进行血流速度的测量,而且还能够通过角度校正功能,进一步增强测量的准确性[23] [24]。这一点在对大脑动脉血流动力学参数的评估中尤为明显[25]。另外,TCCD在评估颅内动脉狭窄或闭塞方面显示出较高的敏感性和特异性。TCCD在诊断颅内动脉狭窄的准确性上可能优于传统的TCD技术,尤其是在评估狭窄程度和判断血管痉挛方面[25]

TCCD在技术上具有明显优势,但其在临床应用仍受到一定限制,包括对操作者技术要求较高、设备成本以及对患者解剖结构的特定要求,例如衰老导致颞骨厚度增加,老年人监测的失败率高于年轻人群[26]-[28]。然而,随着技术的进步和医疗设备成本的降低,预计TCCD将在未来的临床实践中得到更广泛的应用[25]

3. 脑氧饱和度监测

脑组织对缺氧的耐受性差,颅脑损伤患者的治疗重点是保障脑氧合,所以监测脑组织氧合情况尤其重要。临床上非侵入性监测主要是基于近红外光谱技术(Near Infrared Reflectance Spectroscopy, NIRS)测得的局部脑氧饱和度(Regional Cerebral Oxygen Saturation, rScO2)。

自从1977年NIRS技术被首次提出并用于监测脑血流和氧合状态以来[29],该技术在对重症颅脑损伤患者的临床监测中应用已经显著增加。NIRS运用波长范围为700至1000纳米的近红外光谱,在此范围,血液中的氧合血红蛋白和脱氧血红蛋白等色团的吸收特别明显,而水等其他成分的吸收则相对较少。这些波长的光能够穿透颅骨并深入脑组织达到数毫米的深度,根据朗伯–比尔定律,光的吸收量与血液中色团的浓度成正比[30]。NIRS通过测量反射光的衰减精确地反映大脑中的rScO2,这是评估氧供与氧耗平衡的一个关键指标。

NIRS在监测脑氧合方面具有高度的敏感性,但它不能区分动脉血、毛细血管血和静脉血。因此,NIRS测量的氧饱和度实际上是一种包含动脉和静脉血的氧饱和度混合值,因大脑中约75%的血液是静脉血,所以NIRS技术主要受静脉血氧合水平的影响[31],可以解释NIRS测量的氧饱和度通常低于脉搏血氧仪测量的动脉氧饱和度[32]

NIRS技术具有显著的临床应用潜力,Navarro-Perez、Rosalia等[33]的研究表明,NIRS作为一种无创测量脑氧饱和度的方法,在心脏手术中有助于降低神经系统并发症的风险。Sun、Zhen等[34]的研究也证实NIRS在预测自发性脑出血患者预后方面的高价值。在ICU中,NIRS技术在协助呼吸机撤离方面显示出重要性,尤其是在评估气管拔管时机的静态和动态参数存在不确定性时[35]

NIRS技术在临床应用中展现出优势,但其在经皮测量中的准确性仍存在争议。NIRS信号可能受到皮肤、颅骨和脑脊液等非脑组织的干扰[36]-[38]。为提高测量的准确性,科研人员正在开发一种集成NIRS与ICP监测的新型设备,并探索新算法以减少非脑组织对NIRS信号的影响[39]

综合考虑,NIRS技术目前是较理想的神经监测工具,能够识别脑部组织中潜在的继发性损伤,并可以补充或替代传统侵入性监测方法[40] [41]。NIRS技术的发展和完善,将为神经重症患者的临床管理提供更精准的监测手段。

4. 脑电活动监测

脑血流与脑氧合监测的目的是保护患者的脑功能,脑功能可以被连续脑电图(Continuous Electroencephalogram, cEEG)的监测指标反映。cEEG是一种利用数字化设备进行长期脑电活动记录的方法,监测周期可从数小时延长至数日乃至数周[42]。cEEG作为一种神经监测工具,在ICU对于颅脑损伤患者的治疗中起到重要作用[43]。国际研究显示,从2004年到2013年,重症患者中cEEG的应用率激增超过十倍[44],在神经重症监护病房的临床诊疗活动中,cEEG已被广泛应用[45]。由于地区发展的差异,cEEG的普及率和应用效果可能存在差异[46]

cEEG在监测癫痫活动和评估抗癫痫治疗的响应方面发挥着关键作用[47]。cEEG可以详细反映癫痫发作特征、评估颅脑损伤严重性、辅助神经影像学检查确定昏迷原因、监测镇静深度、监测脑缺血或血管痉挛,且有助于预测疾病发展趋势[48]。通过综合分析神经电生理检查的异常结果与患者的整体病情,可以为临床治疗提供宝贵的指导。以此看来,cEEG不仅在癫痫发作的监测和治疗评估中不可或缺,在ICU对颅脑损伤患者的全面神经监测中也有其独特价值,国内研究也强调神经电生理检查在反映重症颅脑损伤患者脑功能紊乱程度方面具有重要性[49]。随着技术的进步和临床应用的深入,cEEG有望在神经重症患者的管理中发挥更大的作用。

脑电双频指数(Bispectral Index, BIS)是一种通过计算机分析脑电图信号,综合考虑波形的频率、相位和功率等要素,将复杂的脑电活动转化为一个介于0至100之间,且与患者的意识水平呈正相关的数值指标。BIS值为85或以上时,患者完全清醒;60至84时,患者处于催眠或镇静状态;40至59时,患者处于全身麻醉状态;低于39则指示大脑皮层受到深度抑制,而0值则指示脑死亡。自1996年获得美国食品和药物管理局(Food and Drug Administration, FDA)批准用于指导麻醉和镇静药物的使用以来[50],BIS技术已经经过二十年的发展和完善,目前在ICU和手术室中得到广泛采用。

临床研究指出,为达到最佳镇静效果并优化患者的复苏过程,BIS值应控制在40至60之间[51]。BIS不仅能够有效评估机械通气患者的镇静深度,指导镇静药物的使用,还能辅助评估心肺复苏和颅脑损伤患者的预后及脑功能状态[52]。国内有研究发现,BIS监测与急性颅脑损伤者的格拉斯哥昏迷评分显著相关,且BIS能有效地评估急性颅脑损伤的严重程度,连续动态监测BIS具有重要临床意义[53]

5. 颅内压监测

脑血流、脑氧合、脑电生理是保障患者远期生存率及生存质量的重要监测手段,脑损伤患者早期脑组织因炎症反应等会引发脑水肿,ICP升高,进而影响脑血流、脑氧需求增加、脑电生理异常,所以要实现对颅脑病情进展的全面评估,离不开对ICP的监测。

ICP指的是脑组织、脑脊液和血液对颅骨内壁施加的压力。大脑外包围着坚硬的头骨,ICP增加可能会导致脑灌注压降低,进而引发脑缺血[54]。虽然更普遍且精确的ICP监测手段通常采用有创方法,但本文主要讨论非侵入性监测,目前的文献中,被提及最多的非侵入性ICP监测技术是视神经鞘直径(Optic nerve Sheath Diameter, ONSD) [55] [56]

视神经鞘作为硬脑膜的延伸部分,其内部的脑脊液与颅腔内的脑脊液直接相连。在ICP增加的情况下,这种压力可以经由脑脊液传递至视神经鞘,ONSD随之增大[57]。医生可以利用床旁超声技术实时精确监测ONSD的变化,进而预测ICP的波动[58],这对于指导ICU急性颅脑损伤患者的临床治疗具有重要意义。受限于个体差异及技术要求,ONSD的变化并不能完全代替有创监测[56] [59]。但在多个研究中,患者ONSD升高与ICP升高之间的相关性良好,具有很高临床应用价值[60] [61]

6. 脑结构监测

对于神经重症患者,虽然ICP监测可间接反映颅脑解剖结构的变化,但最直观、最普遍的方式仍然是计算机断层扫描(Computed Tomography, CT)。尤其对于中度至重度创伤性颅脑损伤患者,神经重症监测中的关键环节是明确颅脑解剖结构的CT检查[7]

CT因其高分辨率和快速成像能力,在评估颅脑损伤、监测病变进展及指导治疗决策中发挥着重要作用,尤其是对于重症颅脑损伤患者的诊断和治疗至关重要。在神经重症监护病房中,CT成像稳定、可靠、容易解读,常用于紧急监测颅内出血、脑水肿、脑梗死以及其他相关病变[62]。研究表明,CT所评估的脑水肿分级与创伤性颅脑损伤、蛛网膜下腔出血和脑出血患者的ICP和临床结果存在显著的相关性[63]

在临床实践中,ICU患者多处于镇静状态,进行CT检查需要转运至检查室,但由于其病情稳定性较差,当患者需要从ICU转运至其他医疗区域时,所面临的临床恶化风险显著增加。这一过程中,患者的生理状态可能因多种因素而波动,从而增加并发症的发生概率[64]。因此,对于ICU患者而言,转运前的全面评估、转运过程中的细致监护以及转运后的持续监测都是至关重要的。这要求医疗团队在转运前制定详尽的计划,确保转运过程中的设备和人员配备齐全,以及在转运后能够迅速恢复对患者的全面监护。

CT等影像学监测技术在神经重症患者的临床应用中具有不可替代的价值。将CT引导的脑监测技术融入神经重症监护的临床实践中,对于向颅脑损伤或疾病患者提供个体化且高效的医疗服务具有重要意义。未来随着科技进步,影像技术和神经监测技术将继续在提高神经重症监护患者预后和降低死亡率方面发挥关键作用。

7. 展望与总结

在神经重症监护领域中,侵入性监测容易对患者造成不同程度的损伤以及生理学的干扰,而非侵入性监测相对安全,所以在感染易发的ICU环境中,非侵入性MMM的应用正逐步成为提高患者治疗成效的核心,预计未来监测技术的持续创新将使非侵入性MMM能够实现更细致的监测,为临床决策提供更精确的数据支持。随着计算能力的提升和算法的优化,非侵入性MMM将整合更多监测技术,如脑氧合、脑电生理、脑血流、脑代谢和神经调节等,构建一个全面的监测网络。这种综合监测模式将使医生能够更全面地了解患者的病情变化,从而制定更为精确的治疗计划。新型监测设备的开发以及新算法的应用,将进一步提升监测的准确性和可靠性。这些技术的进步预计将为神经重症患者的临床管理带来革命性的变化,提高患者的生存率和生活质量,同时降低医疗成本和并发症风险。

非侵入性MMM已成为神经重症患者管理中不可或缺的工具。通过整合脑氧饱和度监测、脑电活动监测、脑血流监测和ICP监测等多种监测手段,非侵入性MMM能够在最小刺激的条件下获取尽可能多的病理生理学参数,同时为临床提供全面的病情评估。技术的进步将使非侵入性MMM更加精准和个性化,有助于改进治疗策略,提升患者生存率和生活质量。未来,非侵入性MMM的集成化和计算能力的提升将进一步推动其在神经重症监护中的应用,实现更安全、更高效的临床管理。

NOTES

*通讯作者。

参考文献

[1] 刘付蓉, 翁利, 杜斌. 2020年至2022年中国重症医学临床研究进展[J]. 中华重症医学电子杂志, 2024, 10(1): 48-53.
[2] 陈伟程, 吉喆, 肖寒, 等. 全国机动车保有量分析——《中国机动车环境管理年报(2017)》第Ⅰ部分[J]. 环境保护, 2017, 45(12): 33-34.
[3] Raj, R., Bendel, S., Reinikainen, M., Hoppu, S., Laitio, R., Ala-Kokko, T., et al. (2018) Costs, Outcome and Cost Effectiveness of Neurocritical Care: A Multi-Center Observational Study. Critical Care, 22, Article No. 225.
https://doi.org/10.1186/s13054-018-2151-5
[4] Roh, D. and Park, S. (2016) Brain Multimodality Monitoring: Updated Perspectives. Current Neurology and Neuroscience Reports, 16, Article No. 56.
https://doi.org/10.1007/s11910-016-0659-0
[5] Tasneem, N., Samaniego, E.A., Pieper, C., Leira, E.C., Adams, H.P., Hasan, D., et al. (2017) Brain Multimodality Monitoring: A New Tool in Neurocritical Care of Comatose Patients. Critical Care Research and Practice, 2017, Article ID: 6097265.
https://doi.org/10.1155/2017/6097265
[6] Monteiro, E., Ferreira, A., Mendes, E.R., Silva, S.R.E., Maia, I., Dias, C.C., et al. (2023) Neurocritical Care Management Supported by Multimodal Brain Monitoring after Acute Brain Injury. Critical Care Science, 35, 196-202.
https://doi.org/10.5935/2965-2774.20230036-pt
[7] Robinson, C.P. (2021) Moderate and Severe Traumatic Brain Injury. CONTINUUM: Lifelong Learning in Neurology, 27, 1278-1300.
https://doi.org/10.1212/con.0000000000001036
[8] Peacock, S.H. and Tomlinson, A.D. (2018) Multimodal Neuromonitoring in Neurocritical Care. AACN Advanced Critical Care, 29, 183-194.
https://doi.org/10.4037/aacnacc2018632
[9] Sharma, R., Tsikvadze, M., Peel, J., Howard, L., Kapoor, N. and Freeman, W.D. (2023) Multimodal Monitoring: Practical Recommendations (Dos and Don’ts) in Challenging Situations and Uncertainty. Frontiers in Neurology, 14, Article 1135406.
https://doi.org/10.3389/fneur.2023.1135406
[10] Totapally, A., Fretz, E.A. and Wolf, M.S. (2024) A Narrative Review of Neuromonitoring Modalities in Critically Ill Children. Minerva Pediatrics, 76, 556-565.
https://doi.org/10.23736/s2724-5276.23.07291-9
[11] Sloan, M.A., Alexandrov, A.V., Tegeler, C.H., Spencer, M.P., Caplan, L.R., Feldmann, E., et al. (2004) Assessment: Transcranial Doppler Ultrasonography: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 62, 1468-1481.
https://doi.org/10.1212/wnl.62.9.1468
[12] Aaslid, R., Huber, P. and Nornes, H. (1986) A Transcranial Doppler Method in the Evaluation of Cerebrovascular Spasm. Neuroradiology, 28, 11-16.
https://doi.org/10.1007/bf00341759
[13] Sviri, G.E., Ghodke, B., Britz, G.W., Douville, C.M., Haynor, D.R., Mesiwala, A.H., et al. (2006) Transcranial Doppler Grading Criteria for Basilar Artery Vasospasm. Neurosurgery, 59, 360-366.
https://doi.org/10.1227/01.neu.0000223502.93013.6e
[14] Naqvi, J., Yap, K.H., Ahmad, G. and Ghosh, J. (2013) Transcranial Doppler Ultrasound: A Review of the Physical Principles and Major Applications in Critical Care. International Journal of Vascular Medicine, 2013, Article ID: 629378.
https://doi.org/10.1155/2013/629378
[15] Lau, V.I. and Arntfield, R.T. (2017) Point-of-care Transcranial Doppler by Intensivists. Critical Ultrasound Journal, 9, Article No. 21.
https://doi.org/10.1186/s13089-017-0077-9
[16] Gosling, R.G. and King, D.H. (1974) The Role of Measurement in Peripheral Vascular Surgery: Arterial Assessment by Doppler-Shift Ultrasound. Proceedings of the Royal Society of Medicine, 67, 447-449.
https://doi.org/10.1177/00359157740676p113
[17] Kaloria, N., Panda, N.B., Bhagat, H., Kaloria, N., Soni, S.L., Chauhan, R., et al. (2020) Pulsatility Index Reflects Intracranial Pressure Better than Resistive Index in Patients with Clinical Features of Intracranial Hypertension. Journal of Neurosciences in Rural Practice, 11, 144-150.
https://doi.org/10.1055/s-0039-3399477
[18] Bellner, J., Romner, B., Reinstrup, P., Kristiansson, K., Ryding, E. and Brandt, L. (2004) Transcranial Doppler Sonography Pulsatility Index (PI) Reflects Intracranial Pressure (ICP). Surgical Neurology, 62, 45-51.
https://doi.org/10.1016/j.surneu.2003.12.007
[19] D’Andrea, A., Conte, M., Scarafile, R., Riegler, L., Cocchia, R., Pezzullo, E., et al. (2016) Transcranial Doppler Ultrasound: Physical Principles and Principal Applications in Neurocritical Care Unit. Journal of Cardiovascular Echography, 26, 28-41.
https://doi.org/10.4103/2211-4122.183746
[20] Sarkar, S., Ghosh, S., Ghosh, S.K. and Collier, A. (2007) Role of Transcranial Doppler Ultrasonography in Stroke. Postgraduate Medical Journal, 83, 683-689.
https://doi.org/10.1136/pgmj.2007.058602
[21] Akif Topcuoglu, M. (2012) Transcranial Doppler Ultrasound in Neurovascular Diseases: Diagnostic and Therapeutic Aspects. Journal of Neurochemistry, 123, 39-51.
https://doi.org/10.1111/j.1471-4159.2012.07942.x
[22] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组, 中华医学会神经病学分会神经影像学协作组. 中国脑血管超声临床应用指南[J]. 中华神经科杂志, 2016, 49(7): 507-518.
[23] Nedelmann, M., Stolz, E., Gerriets, T., Baumgartner, R.W., Malferrari, G., Seidel, G., et al. (2009) Consensus Recommendations for Transcranial Color-Coded Duplex Sonography for the Assessment of Intracranial Arteries in Clinical Trials on Acute Stroke. Stroke, 40, 3238-3244.
https://doi.org/10.1161/strokeaha.109.555169
[24] Purkayastha, S. and Sorond, F. (2013) Transcranial Doppler Ultrasound: Technique and Application. Seminars in Neurology, 32, 411-420.
https://doi.org/10.1055/s-0032-1331812
[25] Gunda, S.T., Ng, T.K.V., Liu, T., Chen, Z., Han, X., Chen, X., et al. (2024) A Comparative Study of Transcranial Color-Coded Doppler (TCCD) and Transcranial Doppler (TCD) Ultrasonography Techniques in Assessing the Intracranial Cerebral Arteries Haemodynamics. Diagnostics, 14, 387.
https://doi.org/10.3390/diagnostics14040387
[26] Kwon, J., Kim, J.S., Kang, D., Bae, K. and Kwon, S.U. (2006) The Thickness and Texture of Temporal Bone in Brain CT Predict Acoustic Window Failure of Transcranial Doppler. Journal of Neuroimaging, 16, 347-352.
https://doi.org/10.1111/j.1552-6569.2006.00064.x
[27] Lin, Y., Fu, M. and Tan, T. (2015) Factors Associated with No or Insufficient Temporal Bone Window Using Transcranial Color-Coded Sonography. Journal of Medical Ultrasound, 23, 129-132.
https://doi.org/10.1016/j.jmu.2015.07.002
[28] Kenton, A.R., Martin, P.J., Abbott, R.J. and Moody, A.R. (1997) Comparison of Transcranial Color-Coded Sonography and Magnetic Resonance Angiography in Acute Stroke. Stroke, 28, 1601-1606.
https://doi.org/10.1161/01.str.28.8.1601
[29] Jöbsis, F.F. (1977) Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198, 1264-1267.
https://doi.org/10.1126/science.929199
[30] Oshina, I. and Spigulis, J. (2021) Beer-Lambert Law for Optical Tissue Diagnostics: Current State of the Art and the Main Limitations. Journal of Biomedical Optics, 26, Article ID: 100901.
https://doi.org/10.1117/1.jbo.26.10.100901
[31] Matta, B.F., Menon, D.K. and Smith, M. (2011) Core Topics in Neuroanaesthesia and Neurointensive Care. Cambridge University Press.
[32] Owen-Reece, H., Smith, M., Elwell, C.E. and Goldstone, J.C. (1999) Near Infrared Spectroscopy. British Journal of Anaesthesia, 82, 418-426.
https://doi.org/10.1093/bja/82.3.418
[33] Navarro-Perez, R., Romero-García, N., Paolessi, C., Robba, C. and Badenes, R. (2024) Cerebral Oximetry in High-Risk Surgical Patients: Where Are We? Current Opinion in Critical Care, 30, 672-678.
https://doi.org/10.1097/mcc.0000000000001204
[34] Sun, Z., Liu, J., Wang, K., Zhang, J., Liu, S. and Xue, F. (2024) Feasibility of Noninvasive Near-Infrared Spectroscopy Monitoring in Predicting the Prognosis of Spontaneous Intracerebral Hemorrhage. Frontiers in Neurology, 15, Article 1406157.
https://doi.org/10.3389/fneur.2024.1406157
[35] Brogly, N. and Gilsanz, F. (2014) Advances in Weaning Patients from Mechanical Ventilation: Could Near-Infrared Spectroscopy Help? Minerva Anestesiologica, 80, 632-634.
[36] Hongo, K., Kobayashi, S., Okudera, H., Hokama, M. and Nakagawa, F. (1995) Noninvasive Cerebral Optical Spectroscopy: Depth-Resolved Measurements of Cerebral Haemodynamics Using Indocyanine Green. Neurological Research, 17, 89-93.
https://doi.org/10.1080/01616412.1995.11740293
[37] Schwarz, G., Litscher, G., Kleinert, R. and Jobstmann, R. (1996) Cerebral Oximetry in Dead Subjects. Journal of Neurosurgical Anesthesiology, 8, 189-193.
https://doi.org/10.1097/00008506-199607000-00001
[38] Germon, T.J., Evans, P.E., Barnett, N.J., Lewis, T.T., Wall, P. and Nelson, R.J. (1997) Changes in Tissue Oxyhaemoglobin Concentration Measured Using Multichannel near Infrared Spectroscopy during Internal Carotid Angiography. Journal of Neurology, Neurosurgery & Psychiatry, 63, 660-664.
https://doi.org/10.1136/jnnp.63.5.660
[39] Keller, E., Froehlich, J., Muroi, C., Sikorski, C. and Muser, M. (2011) Neuromonitoring in Intensive Care: A New Brain Tissue Probe for Combined Monitoring of Intracranial Pressure (ICP) Cerebral Blood Flow (CBF) and Oxygenation. In: Feng, H., Mao, Y. and Zhang, J.H., Eds., Early Brain Injury or Cerebral Vasospasm, Springer, 217-220.
https://doi.org/10.1007/978-3-7091-0356-2_39
[40] Mathieu, F., Khellaf, A., Ku, J.C., Donnelly, J., Thelin, E.P. and Zeiler, F.A. (2020) Continuous Near-Infrared Spectroscopy Monitoring in Adult Traumatic Brain Injury: A Systematic Review. Journal of Neurosurgical Anesthesiology, 32, 288-299.
https://doi.org/10.1097/ana.0000000000000620
[41] Weigl, W., Milej, D., Janusek, D., Wojtkiewicz, S., Sawosz, P., Kacprzak, M., et al. (2016) Application of Optical Methods in the Monitoring of Traumatic Brain Injury: A Review. Journal of Cerebral Blood Flow & Metabolism, 36, 1825-1843.
https://doi.org/10.1177/0271678x16667953
[42] Hirsch, L.J. (2004) Continuous EEG Monitoring in the Intensive Care Unit: An Overview. Journal of Clinical Neurophysiology, 21, 332-340.
[43] Koren, J., Herta, J. and Baumgartner, C. (2020) Critical Care EEG. Fortschritte der Neurologie · Psychiatrie, 88, 52-63.
https://doi.org/10.1055/a-1008-7783
[44] Hill, C.E., Blank, L.J., Thibault, D., Davis, K.A., Dahodwala, N., Litt, B., et al. (2019) Continuous EEG Is Associated with Favorable Hospitalization Outcomes for Critically Ill Patients. Neurology, 92, e9-e18.
https://doi.org/10.1212/wnl.0000000000006689
[45] Claassen, J., Taccone, F.S., Horn, P., Holtkamp, M., Stocchetti, N. and Oddo, M. (2013) Recommendations on the Use of EEG Monitoring in Critically Ill Patients: Consensus Statement from the Neurointensive Care Section of the ESICM. Intensive Care Medicine, 39, 1337-1351.
https://doi.org/10.1007/s00134-013-2938-4
[46] Sutter, R., Stevens, R.D. and Kaplan, P.W. (2013) Continuous Electroencephalographic Monitoring in Critically Ill Patients: Indications, Limitations, and Strategies. Critical Care Medicine, 41, 1124-1132.
https://doi.org/10.1097/ccm.0b013e318275882f
[47] Jette, N. and Hirsch, L.J. (2005) Continuous Electroencephalogram Monitoring in Critically Ill Patients. Current Neurology and Neuroscience Reports, 5, 312-321.
https://doi.org/10.1007/s11910-005-0077-1
[48] Kennedy, J.D. and Gerard, E.E. (2012) Continuous EEG Monitoring in the Intensive Care Unit. Current Neurology and Neuroscience Reports, 12, 419-428.
https://doi.org/10.1007/s11910-012-0289-0
[49] 许晖, 董江涛, 王惠, 等. 重型颅脑损伤患者TCD、神经电生理监测对预后评价的临床研究[J]. 现代预防医学, 2019, 46(4): 752-755.
[50] Rajabi, M., Khezri, M., Yaghoobi, S. and Barikani, A. (2020) Effect of Intravenous Lignocaine Infusion on Bispectral Index during Spinal Anaesthesia for Caesarean Section: A Prospective Randomised Double-Blind Study. Indian Journal of Anaesthesia, 64, 369-374.
https://doi.org/10.4103/ija.ija_424_19
[51] Iida, R., Iwasaki, K., Kato, J. and Ogawa, S. (2011) Bispectral Index Is Related to the Spread of Spinal Sensory Block in Patients with Combined Spinal and General Anaesthesia. British Journal of Anaesthesia, 106, 202-207.
https://doi.org/10.1093/bja/aeq359
[52] 王小峰, 王琪, 白西民, 等. 脑电双频指数对颅脑损伤严重程度和患者预后的评估研究进展[J]. 临床神经外科杂志, 2021, 18(6): 714-716, 720.
[53] 书国伟, 张珏, 费智敏. 脑电双频指数评估急性脑损伤程度的可行性研究[J]. 中国神经精神疾病杂志, 2019, 45(6): 370-373.
[54] Czosnyka, M. and Pickard, J.D. (2004) Monitoring and Interpretation of Intracranial Pressure. Journal of Neurology, Neurosurgery and Psychiatry, 75, 813-821.
[55] Harary, M., Dolmans, R.G.F. and Gormley, W.B. (2018) Intracranial Pressure Monitoring—Review and Avenues for Development. Sensors, 18, Article 465.
https://doi.org/10.3390/s18020465
[56] Kasinathan, S., Duraisamy, S. and Verma, R.N. (2024) Diagnostic Evaluation of Optic Nerve Sheath Diameter in Predicting Elevated Intracranial Pressure among Neurocritically Ill Patients: A Prospective Observational Study. International Journal of Critical Illness and Injury Science, 14, 120-128.
[57] Goeres, P., Zeiler, F.A., Unger, B., Karakitsos, D. and Gillman, L.M. (2016) Ultrasound Assessment of Optic Nerve Sheath Diameter in Healthy Volunteers. Journal of Critical Care, 31, 168-171.
https://doi.org/10.1016/j.jcrc.2015.10.009
[58] Newman, W.D. (2002) Measurement of Optic Nerve Sheath Diameter by Ultrasound: A Means of Detecting Acute Raised Intracranial Pressure in Hydrocephalus. British Journal of Ophthalmology, 86, 1109-1113.
https://doi.org/10.1136/bjo.86.10.1109
[59] Agrawal, D., Raghavendran, K., Zhao, L. and Rajajee, V. (2020) A Prospective Study of Optic Nerve Ultrasound for the Detection of Elevated Intracranial Pressure in Severe Traumatic Brain Injury. Critical Care Medicine, 48, e1278-e1285.
https://doi.org/10.1097/ccm.0000000000004689
[60] Berhanu, D., Ferreira, J.C., Abegão Pinto, L., Aguiar de Sousa, D., Lucas Neto, L. and Tavares Ferreira, J. (2023) The Role of Optic Nerve Sheath Ultrasonography in Increased Intracranial Pressure: A Systematic Review and Meta Analysis. Journal of the Neurological Sciences, 454, Article ID: 120853.
https://doi.org/10.1016/j.jns.2023.120853
[61] Dubourg, J., Javouhey, E., Geeraerts, T., Messerer, M. and Kassai, B. (2011) Ultrasonography of Optic Nerve Sheath Diameter for Detection of Raised Intracranial Pressure: A Systematic Review and Meta-Analysis. Intensive Care Medicine, 37, 1059-1068.
https://doi.org/10.1007/s00134-011-2224-2
[62] Bhargava, R. (2019) CT Imaging in Neurocritical Care. Indian Journal of Critical Care Medicine, 23, 98-103.
https://doi.org/10.5005/jp-journals-10071-23185
[63] Lietke, S., Zausinger, S., Patzig, M., Holtmanspötter, M. and Kunz, M. (2020) CT‐Based Classification of Acute Cerebral Edema: Association with Intracranial Pressure and Outcome. Journal of Neuroimaging, 30, 640-647.
https://doi.org/10.1111/jon.12736
[64] Williamson, C., Morgan, L. and Klein, J. (2017) Imaging in Neurocritical Care Practice. Seminars in Respiratory and Critical Care Medicine, 38, 840-852.
https://doi.org/10.1055/s-0037-1608770

Baidu
map