[1] |
Gao, H., Li, J., Zhang, F., Li, C., Xiao, J., Nie, X., et al. (2024) Revealing the Potential and Challenges of High-Entropy Layered Cathodes for Sodium-Based Energy Storage. Advanced Energy Materials, 14, Article 2304529. https://doi.org/10.1002/aenm.202304529 |
[2] |
Shao, R., Sun, Z., Wang, L., Pan, J., Yi, L., Zhang, Y., et al. (2024) Resolving the Origins of Superior Cycling Performance of Antimony Anode in Sodium-Ion Batteries: A Comparison with Lithium-Ion Batteries. Angewandte Chemie International Edition, 63, e202320183. https://doi.org/10.1002/anie.202320183 |
[3] |
Ren, D., Feng, X., Liu, L., Hsu, H., Lu, L., Wang, L., et al. (2021) Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials, 34, 563-573. https://doi.org/10.1016/j.ensm.2020.10.020 |
[4] |
Zhao, D., Pu, X., Wang, C., Pan, Z., Ding, M., Cao, Y., et al. (2024) Low-Strain Layered Zn0.56VOPO4∙2H2O as a High-Voltage and Long-Lifespan Cathode Material for Zn-Ion Batteries. Energy Storage Materials, 66, Article 103239. https://doi.org/10.1016/j.ensm.2024.103239 |
[5] |
Dai, Y., Zhang, C., Li, J., Gao, X., Hu, P., Ye, C., et al. (2024) Inhibition of Vanadium Cathodes Dissolution in Aqueous Zn-Ion Batteries. Advanced Materials, 36, Article 2310645. https://doi.org/10.1002/adma.202310645 |
[6] |
Yan, H., Li, S., Zhong, J. and Li, B. (2023) An Electrochemical Perspective of Aqueous Zinc Metal Anode. Nano-Micro Letters, 16, Article No. 15. https://doi.org/10.1007/s40820-023-01227-x |
[7] |
Xie, D., Liu, H., Liu, C., Diao, W., Tao, F., Jiang, W., et al. (2024) Co-Solvent and Additive Joint Engineering Enable Long-Life and Wide-Temperature Zn Metal Battery. Energy Storage Materials, 70, Article 103524. https://doi.org/10.1016/j.ensm.2024.103524 |
[8] |
Yang, J., Liu, H., Zhao, X., Zhang, X., Zhang, K., Ma, M., et al. (2024) Janus Binder Chemistry for Synchronous Enhancement of Iodine Species Adsorption and Redox Kinetics toward Sustainable Aqueous Zn-I2 Batteries. Journal of the American Chemical Society, 146, 6628-6637. https://doi.org/10.1021/jacs.3c12638 |
[9] |
Mo, L., Huang, Y., Wang, Y., Wei, T., Zhang, X., Zhang, H., et al. (2023) Electrochemically Induced Phase Transformation in Vanadium Oxide Boosts Zn-Ion Intercalation. ACS Nano, 18, 1172-1180. https://doi.org/10.1021/acsnano.3c11217 |
[10] |
Iftikhar Khan, M., Wang, Z., Jia, X. and Cao, G. (2023) Enhancing Aqueous Zinc-Ion Battery Performance through Structural Modification of Hydrated Vanadate with Lanthanum. ACS Applied Energy Materials, 7, 84-92. https://doi.org/10.1021/acsaem.3c02140 |
[11] |
Chen, M., Yang, M., Han, X., Chen, J., Zhang, P. and Wong, C. (2023) Suppressing Rampant and Vertical Deposition of Cathode Intermediate Product via PH Regulation toward Large-Capacity and High-Durability Zn//MNO2 Batteries. Advanced Materials, 36, Article 2304997. https://doi.org/10.1002/adma.202304997 |
[12] |
Wang, H., Guo, R., Ma, Y. and Zhou, F. (2023) Cross-Doped Mn/Mo Oxides with Core-Shell Structures Designed by a Self-Template Strategy for Durable Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2301351. https://doi.org/10.1002/adfm.202301351 |
[13] |
Zhai, X., Yu, Y. and Hu, Y. (2023) Engineering Aqueous Zn-MnO2 Microbatteries Using a Synergistic Reaction Mechanism. ACS Applied Energy Materials, 6, 6171-6182. https://doi.org/10.1021/acsaem.3c00690 |
[14] |
Ding, L., Wang, L., Gao, J., Yan, T., Li, H., Mao, J., et al. (2023) Facile Zn2+ Desolvation Enabled by Local Coordination Engineering for Long-Cycling Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2301648. https://doi.org/10.1002/adfm.202301648 |
[15] |
Ye, J.-J., Li, P.-H., Hou, Z., et al. (2024) Se-Dopant Modulated Selective Co-Insertion of H+ and Zn2+ in MnO2 for High-Capacity and Durable Aqueous Zn-Ion Batteries, Angew. Angewandte Chemie International Edition, 2024, e202410900. |
[16] |
Yang, H., Wan, Y., Sun, K., Zhang, M., Wang, C., He, Z., et al. (2023) Reconciling Mass Loading and Gravimetric Performance of MnO2 Cathodes by 3d-Printed Carbon Structures for Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2215076. https://doi.org/10.1002/adfm.202215076 |
[17] |
Xiankai, F., Kaixiong, X., Wei, Z., Weina, D., Hai, Z., Liang, C., et al. (2024) A Novel Improvement Strategy and a Comprehensive Mechanism Insight for α-MnO2 Energy Storage in Rechargeable Aqueous Zinc-Ion Batteries. Carbon Energy, 6, e536. https://doi.org/10.1002/cey2.536 |
[18] |
Zhou, X., Chen, S., Zhang, Y., Yu, B., Chen, Y., Liu, Y., et al. (2024) Three-Dimensional Conductive Interface and Tip Structure of MnO2 Electrode Facilitate Superior Zinc Ion Batteries. Small Structures, 5, Article 2400057. https://doi.org/10.1002/sstr.202400057 |
[19] |
Zhao, Y., Zhou, R., Song, Z., Zhang, X., Zhang, T., Zhou, A., et al. (2022) Interfacial Designing of MnO2 Half-Wrapped by Aromatic Polymers for High-Performance Aqueous Zinc-Ion Batteries. Angewandte Chemie, 134, Article 2212231. https://doi.org/10.1002/ange.202212231 |
[20] |
Zhao, X., Zhang, F., Li, H., Dong, H., Yan, C., Meng, C., et al. (2024) Dynamic Heterostructure Design of MnO2 for High-Performance Aqueous Zinc-Ion Batteries. Energy & Environmental Science, 17, 3629-3640. https://doi.org/10.1039/d4ee00341a |
[21] |
Luo, C., Lei, H., Xiao, Y., Nie, X., Li, Y., Wang, Q., et al. (2024) Recent Development in Addressing Challenges and Implementing Strategies for Manganese Dioxide Cathodes in Aqueous Zinc Ion Batteries. Energy Materials, 4, Article 400036. https://doi.org/10.20517/energymater.2023.119 |
[22] |
Li, Z., Zheng, Y., Jiao, Q., Zhao, Y., Li, H. and Feng, C. (2023) Tailoring Porous Three-Dimensional (Co, Mn) (Co, Mn)2O4/PPY Architecture Towards High-Performance Cathode for Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 465, Article 142897. https://doi.org/10.1016/j.cej.2023.142897 |
[23] |
Wang, C., Xiao, B., Huang, J., Xiao, K. and Liu, Z. (2024) Microstructure Strain of ZnMn2O4 Spinel by Regulation of Tetrahedral Sites for High-Performance Aqueous Zinc-Ion Battery. Advanced Functional Materials, 34, Article 2405680. https://doi.org/10.1002/adfm.202405680 |
[24] |
Deng, S., Tie, Z., Yue, F., Cao, H., Yao, M. and Niu, Z. (2022) Rational Design of Znmn2o4 Quantum Dots in a Carbon Framework for Durable Aqueous Zinc-Ion Batteries. Angewandte Chemie International Edition, 61, e202115877. https://doi.org/10.1002/anie.202115877 |
[25] |
Liu, Q., Fan, G., Zeng, Y., et al. (2024) Hollow Octahedral Pr6O11-Mn2O3 Heterostructures for High-Performance Aqueous Zn-Ion Batteries. Advanced Energy Materials, 2024, Article 2402743. |
[26] |
Wu, H., Lv, R., Wang, R., Zhao, Z., Sun, Y., Liu, Y., et al. (2024) Flexible 3D Porous MnOx/rGO Hydrogel with Fiber Reinforced Effect for Enhancing Mechanical and Zinc Storage Performances. Journal of Alloys and Compounds, 976, Article 173363. https://doi.org/10.1016/j.jallcom.2023.173363 |
[27] |
Liu, Z., Qiu, Z., Li, Z., Wei, T., Fan, Z. and Pang, H. (2024) MnO-Pillared Graphene Blocks Enabling the Ultrastable and Ultrafast Aqueous Zinc Ion Batteries. Science China Chemistry, 67, 2930-2940. https://doi.org/10.1007/s11426-024-1974-1 |
[28] |
Li, X., Ji, C., Shen, J., Feng, J., Mi, H., Xu, Y., et al. (2023) Amorphous Heterostructure Derived from Divalent Manganese Borate for Ultrastable and Ultrafast Aqueous Zinc Ion Storage. Advanced Science, 10, Article 2205794. https://doi.org/10.1002/advs.202205794 |
[29] |
Cheng, H., Zhang, S., Guo, W., Wu, Q., Shen, Z., Wang, L., et al. (2023) Hydrolysis of Solid Buffer Enables High-Performance Aqueous Zinc Ion Battery. Advanced Science, 11, Article 2307052. https://doi.org/10.1002/advs.202307052 |
[30] |
Zhong, X., Kong, Z., Liu, Q., Yang, C., Chen, Y., Qiu, J., et al. (2023) Design Strategy of High Stability Vertically Aligned rGO@V2O5 Heterostructure Cathodes for Flexible Quasi-Solid-State Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 15, 58333-58344. https://doi.org/10.1021/acsami.3c12161 |
[31] |
Liu, M., Hu, A., Yan, Z., Chen, J., He, M., Zhou, B., et al. (2024) Enhancing Zn2+ Diffusion for Dendrite-Free Zinc Anodes via a Robust Zincophilic Clay Mineral Coating. Chemical Engineering Journal, 479, Article 147410. https://doi.org/10.1016/j.cej.2023.147410 |
[32] |
Sun, D., Niu, H., Wang, Z., Zhang, T., Zhou, X., Zhao, J., et al. (2024) Oxygen-Deficient Znvoh@cc as High-Capacity and Stable Cathode for Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 496, Article 154300. https://doi.org/10.1016/j.cej.2024.154300 |
[33] |
Zhang, J., Xia, F., Bao, D., Chen, Y., Hu, L. and Zhu, J. (2024) Two-Dimensional V2O3 Nanosheets Embedded in a Carbon Matrix with Enhanced Performance for Aqueous Zn-Ion Battery. Materials Letters, 357, Article 135706. https://doi.org/10.1016/j.matlet.2023.135706 |
[34] |
Song, Y., Jing, L., Wang, R., Cui, J., Li, M. and Zhang, Y. (2024) Vanadium Oxide Nanospheres Encapsulated in N-Doped Carbon Nanofibers with Morphology and Defect Dual-Engineering toward Advanced Aqueous Zinc-Ion Batteries. Journal of Energy Chemistry, 89, 599-609. https://doi.org/10.1016/j.jechem.2023.10.013 |
[35] |
Zhu, Y., Liu, X., Hu, X., Wang, T., Parkin, I.P., Wang, M., et al. (2024) Polyaniline and Water Pre-Intercalated V2O5 Cathodes for High-Performance Planar Zinc-Ion Micro-Batteries. Chemical Engineering Journal, 487, Article 150384. https://doi.org/10.1016/j.cej.2024.150384 |
[36] |
Jia, D., Shen, Z., Lv, Y., Chen, Z., Li, H., Yu, Y., et al. (2023) In Situ Electrochemical Tuning of Mil-88b(v)@rGO into Amorphous V2O5@rGO as Cathode for High-Performance Aqueous Zinc-Ion Battery. Advanced Functional Materials, 34, Article 2308319. https://doi.org/10.1002/adfm.202308319 |
[37] |
Lashari, N.u.R., Kumar, A., Ahmed, I., Zhao, J., Hussain, A., Ghani, U., et al. (2023) In-Situ Construction of V2O5 Nanosheet/Nitrogen-Doped Carbon Nanosheet Heterostructures with Interfacial C-O Bridging Bonds as the Cathode Material for Zn Ion Batteries. Small, 20, Article 2309029. https://doi.org/10.1002/smll.202309029 |
[38] |
Ye, J., Li, P., Zhang, H., Song, Z., Fan, T., Zhang, W., et al. (2023) Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2305659. https://doi.org/10.1002/adfm.202305659 |
[39] |
Bao, M., Zhang, Z., An, X., Liu, J., Feng, J., Xi, B., et al. (2022) Introducing Ce Ions and Oxygen Defects into V2O5 Nanoribbons for Efficient Aqueous Zinc Ion Storage. Nano Research, 16, 2445-2453. https://doi.org/10.1007/s12274-022-4990-2 |
[40] |
Liu, H., Jiang, L., Cao, B., Du, H., Lu, H., Ma, Y., et al. (2022) Van Der Waals Interaction-Driven Self-Assembly of V2O5 Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution. ACS Nano, 16, 14539-14548. https://doi.org/10.1021/acsnano.2c04968 |
[41] |
Wang, Z., Cui, P., Wang, X., Chang, M., Yu, Y., You, J., et al. (2024) Co-Substitution Engineering Boosting the Kinetics and Stability of VO2 for Zn Ion Batteries. Advanced Functional Materials, 34, Article 2407925. https://doi.org/10.1002/adfm.202407925 |
[42] |
Zhang, C., Wu, Z., Yang, C., Guo, X., Yu, Y. and Yang, Y. (2024) Rational Regulation of Optimal Oxygen Vacancy Concentrations on VO2 for Superior Aqueous Zinc-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 16, 40903-40913. https://doi.org/10.1021/acsami.4c05618 |
[43] |
He, Q., Hu, T., Wu, Q., Wang, C., Han, X., Chen, Z., et al. (2024) Tunnel-Oriented VO2 (B) Cathode for High-Rate Aqueous Zinc-Ion Batteries. Advanced Materials, 36, Article 2400888. https://doi.org/10.1002/adma.202400888 |
[44] |
Lv, T., Liu, Y., Wang, H., Yang, S., Liu, C. and Pang, H. (2021) Crystal Water Enlarging the Interlayer Spacing of Ultrathin V2O5·4VO2·2.72H2O Nanobelts for High-Performance Aqueous Zinc-Ion Battery. Chemical Engineering Journal, 411, Article 128533. https://doi.org/10.1016/j.cej.2021.128533 |
[45] |
Lv, T., Zhu, G., Dong, S., Kong, Q., Peng, Y., Jiang, S., et al. (2022) Co-Intercalation of Dual Charge Carriers in Metal-Ion-Confining Layered Vanadium Oxide Nanobelts for Aqueous Zinc-Ion Batteries. Angewandte Chemie International Edition, 62, e202216089. https://doi.org/10.1002/anie.202216089 |
[46] |
Guo, J., He, B., Gong, W., Xu, S., Xue, P., Li, C., et al. (2023) Emerging Amorphous to Crystalline Conversion Chemistry in Ca-Doped VO2 Cathodes for High-Capacity and Long-Term Wearable Aqueous Zinc-Ion Batteries. Advanced Materials, 36, Article 2303906. https://doi.org/10.1002/adma.202303906 |
[47] |
Li, Q., Zhang, Y., Guo, X., Zhang, G., Yang, Y., Du, M., et al. (2024) Layered (AlO)2OH·VO3 Composite Superstructures for Ultralong Lifespan Aqueous Zinc-Ion Batteries. Journal of Colloid and Interface Science, 663, 697-706. https://doi.org/10.1016/j.jcis.2024.02.189 |
[48] |
Guo, N., Peng, Z., Huo, W., Li, Y., Liu, S., Kang, L., et al. (2023) Stabilizing Zn Metal Anode through Regulation of Zn Ion Transfer and Interfacial Behavior with a Fast Ion Conductor Protective Layer. Small, 19, Article 2303963. https://doi.org/10.1002/smll.202303963 |
[49] |
Liu, M., Zhu, K., Wan, K., Zhang, X., Wei, J., Hou, Y., et al. (2023) Design of Ti4+/Zr4+ as Dual-Supporting Sites in Na3V2(PO4)3 for the Advanced Aqueous Zinc-Ion Battery Cathode. ACS Applied Materials & Interfaces, 15, 28073-28083. https://doi.org/10.1021/acsami.3c04004 |
[50] |
Li, W., Jing, X., Jiang, K. and Wang, D. (2021) Observation of Structural Decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as Cathodes for Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 4, 2797-2807. https://doi.org/10.1021/acsaem.1c00067 |