Ho0.3Tb0.3Dy0.4Fe1.93化合物的结构、磁性和磁致伸缩
Structure, Magnetism and Magnetostriction of Ho 0.3Tb 0.3Dy 0.4Fe 1.93 Compound
DOI: 10.12677/app.2025.151007, PDF, HTML, XML,    科研立项经费支持
作者: 王志业, 时阳光*:南京航空航天大学物理学院,江苏 南京
关键词: Laves相易磁化方向磁致伸缩Laves Phase Easy Magnetic Direction Magnetostriction
摘要: 本文采用真空电弧熔炼法制备了Ho 0.3Tb 0.3Dy 0.4Fe 1.93Laves相化合物,研究了其结构、磁性和磁致伸缩性能。X射线衍射实验和能谱分析结果表明,Ho 0.3Tb 0.3Dy 0.4Fe 1.93化合物呈现单一的Laves相。根据初始交流磁化率曲线确定Ho 0.3Tb 0.3Dy 0.4Fe 1.93化合物有两个自旋重取向温度T SR1和T SR2,分别对应易磁化方向从<111>到<100>和从<100>到<110>的转变。差示扫描量热法测量出Ho 0.3Tb 0.3Dy 0.4Fe 1.93化合物居里温度为643 K。在室温下,Ho 0.3Tb 0.3Dy 0.4Fe 1.93化合物在3 kOe和10 kOe磁场下,磁致伸缩( λ ||- λ )分别为810 ppm和1332 ppm。变温磁致伸缩研究表明,在3 kOe和10 kOe磁场下,磁致伸缩 λ 3 k ≥ 500 ppm和 λ 1 0 k ≥ 1000 ppm的温度跨度分别为155 K和280 K。这表明Ho 0.3Tb 0.3Dy 0.4Fe 1.9化合物具有宽温域磁致伸缩性能。
Abstract: In this paper, Ho 0.3Tb 0.3Dy 0.4Fe 1.93 Laves phase compounds were prepared by vacuum arc melting method, and their structural, magnetic, and magnetostrictive properties were investigated. The results of X-ray diffraction experiments and energy spectroscopic analyses showed that the Ho 0.3Tb 0.3Dy 0.4Fe 1.93 compounds exhibit a single Laves phase. The Ho 0.3Tb 0.3Dy 0.4Fe 1.93 compound was determined to have two spin reorientation temperatures, T SR1 and T SR2, based on the Initial AC magnetic susceptibility, which corresponds to transitions from <111> to <100> and from <100> to <110> in the easy magnetic directionin, respectively. Differential scanning calorimetry measured the Curie temperature of the Ho 0.3Tb 0.3Dy 0.4Fe 1.93 compound to be 643 K. At room temperature, the magnetostriction ( λ ||- λ ) of the Ho 0.3Tb 0.3Dy 0.4Fe 1.93 compounds is 810 ppm and 1332 ppm for magnetic fields of 3 kOe and 10 kOe, respectively. Variable-temperature magnetostriction studies have shown that, for magnetic fields of 3 kOe and 10 kOe, the magnetostriction λ 3k ≥ 500 ppm and λ 15k ≥ 1000 ppm for temperature spans of 155 K and 280 K, respectively. This suggests that the Ho 0.3Tb 0.3Dy 0.4Fe 1.93 compounds have wide temperature domain magnetostrictive properties.
文章引用:王志业, 时阳光. Ho 0.3Tb 0.3Dy 0.4Fe 1.93化合物的结构、磁性和磁致伸缩[J]. 应用物理, 2025, 15(1): 64-70. https://doi.org/10.12677/app.2025.151007

1. 引言

RFe2 (R是稀土)立方Laves相合金在300 K附近具备优异的低场磁致伸缩性能,具有在声学换能器、声纳传感器,微位移制动器等领域应用的较大潜力[1]-[4]。而在实际应用中,磁致伸缩材料需要在较小磁场下获得较大的磁致伸缩值,较大的磁晶各向异性不利于磁致伸缩材料的实际应用[5]-[7]

在300 K附近,知名的磁致伸缩材料Terfenol-D (Tb0.27-0.3Dy0.73-0.70Fe1.9-2.0)具有较小的磁晶各向异性[8] [9],展现出优越的低场磁致伸缩性能[10] [11]。然而Terfenol-D具有一些局限性,如其在磁场增加和降低过程中存在较大磁滞,磁滞的出现会产生涡流损耗[12] [13]。此外,当温度低于245 K时,Terfenol-D合金磁致伸缩性能迅速降低,这表明Terfenol-D不能满足在低于245 K温度下的应用[14]。最近的研究表明,由TbDyFe化合物与TbHoFe化合物组成的各向异性补偿体系Tb-Dy-Ho-Fe合金能够有效降低Terfenol-D的磁滞[15]-[17]。例如,Tb0.28Dy0.57Ho0.15Fe1.95和Tb0.26Dy0.54Ho0.2Fe1.95合金的应变–磁场迟滞曲线宽度比原Tb1-xDyxFe1.95合金分别减小了23%和54% [18]。然而,Ho含量超过0.3时磁滞宽度反而上升。为了拓宽Terfenol-D工作温域,有研究指出调节Tb和Dy的比值,这可以增大饱和磁致伸缩的温域,但缺点是牺牲了室温低场磁致伸缩值[19]。除此之外,Zhang等人发现掺杂Ho的Tb0.29Dy0.51Ho0.2Fe1.95合金[20]可以拓宽Terfenol-D易磁化方向沿<111>的温度范围,然而该合金在低于200 K温度的磁致伸缩还未进行研究。最新研究表明在Terfenol-D中引入少量轻稀土Nd也可以拓宽材料的使用温域,例如:Nd0.25Tb0.3Dy0.45(Fe0.9B0.1)1.93合金[21],Nd0.2Tb0.3Dy0.5Fe1.93合金[14],Tb0.7Nd0.3Fe2化合物[7]。在此背景下,我们研究了Ho0.3Tb0.3Dy0.4Fe1.93化合物的结构、磁性和磁致伸缩性能。该工作将丰富宽温域磁致伸缩材料的研究。

2. 实验方法

以纯度为99.9%的Tb、Dy、Ho以及99.99%的Fe作为起始金属,采用真空电弧熔炼法制备了Ho0.3Tb0.3Dy0.4Fe1.93(HTDF)铸锭。随后,将铸锭在1273 K温度下退火10 h得到多晶化合物。在室温下,利用Cu kα (D8 Bruker) X射线衍射仪对Ho0.3Tb0.3Dy0.4Fe1.93进行XRD测量。XRD粉末数据通过GSAS II软件[22]进行Rietveld精修。此外,我们使用蔡司Gemini SEM 500 (Zeiss Gemini SEM 500)背散射电子成像和能谱分析对化合物成分进行研究。差示扫描量热仪[23]以降温10 K/min速率测得居里温度TC。接着测量10~300 K温度内初始交流磁化率随温度变化的曲线(χ′ac-T),得到自旋重定向温度TSR。最后,用标准应变片技术测定20~300 K温度范围的磁致伸缩(λ = λλ)。

3. 结果与讨论

Figure 1. Refined spectra of Ho0.3Tb0.3Dy0.4Fe1.93 compound at room temperature

1. Ho0.3Tb0.3Dy0.4Fe1.93化合物室温XRD精修谱图

Figure 2. Ho0.3Tb0.3Dy0.4Fe1.93 compound, (a) SEM image, (b) EDS image, (c) EDS composition analysis plot

2. Ho0.3Tb0.3Dy0.4Fe1.93化合物,(a) SEM图像,(b) EDS图像,(c) EDS成分分析图

图1给出了Ho0.3Tb0.3Dy0.4Fe1.93化合物在室温(300 K)精修XRD谱图。借助GSAS-Ⅱ软件精修后的Ho0.3Tb0.3Dy0.4Fe1.93合金的Rwp = 7.92%,χ2 = 2.32。Ho0.3Tb0.3Dy0.4Fe1.93化合物呈现稳定单一的Laves相。值得注意的是,Ho0.3Tb0.3Dy0.4Fe1.93化合物不呈现立方对称性,它们采用了R-3m的菱方结构,这和TbFe2​和Terfenol-D的结构相似[24]。Ho0.3Tb0.3Dy0.4Fe1.93化合物的易磁化方向在室温沿<111>方向。室温下的菱方结构使得化合物呈现较大的磁致伸缩值。因此,XRD粉末衍射实验表明Ho0.3Tb0.3Dy0.4Fe1.93化合物呈现单一的Laves相且易磁化方向沿<111>。

图2(a)~(b)分别展示了Ho0.3Tb0.3Dy0.4Fe1.93化合物的扫描电子显微镜(SEM)形貌图和能谱分析(EDS)图像。扫描电镜观察到样品尺寸为10 μm,黑色箭头位置处的小孔可能是Laves相太脆,在抛光过程中样品表面受力不均匀产生。我们发现HTDF化合物呈现出单一的MgCu2型RFe2立方Laves相,不含RFe3相。为了进一步确定Ho0.3Tb0.3Dy0.4Fe1.93化合物的相成分,我们在样品表面的不同位置进行点扫,不同位置能谱分析的数据计算出平均值。EDS能谱分析表明,Ho0.3Tb0.3Dy0.4Fe1.93多晶化合物成分均匀。图2(c)展示了EDS成分分析图,我们观察到Tb0.3Dy0.4Ho0.3Fe1.93多晶化合物元素Tb, Dy, Ho, Fe比例分别为0.38, 0.29, 0.33, 2.18,与我们配料的标称成分相当接近。SEM和EDS实验表明,Ho0.3Tb0.3Dy0.4Fe1.93化合物呈现单一的MgCu2型RFe2立方Laves相。

Figure 3. Ho0.3Tb0.3Dy0.4Fe1.93 compounds, (a) curves of initial AC magnetisation as a function of temperature (χ′ac-T) at 10~300 K, (b) DSC curves

3. Ho0.3Tb0.3Dy0.4Fe1.93化合物,(a) 在10~300 K初始交流磁化率作为温度的函数曲线(χ′ac-T),(b) DSC曲线

图3(a)展示了Ho0.3Tb0.3Dy0.4Fe1.93化合物在10~300 K初始交流磁化率(χ′ac)随温度(T)变化的曲线。初始交流磁化率曲线中第一个峰值对应着Ho0.3Tb0.3Dy0.4Fe1.93化合物自旋重取向温度TSR1,第二个峰值对应自旋重取向温度TSR2。HTDF化合物的TSR1为181 K,这与Zhang等人在Tb0.296Dy0.472Ho0.232Fe1.95合金[20]中发现了第一个自旋重取向温度TSR1为222 K相类似。尤为值得关注的是,还发现了第二个自旋重取向温度TSR2约为66 K。根据Terfenol-D (Tb0.3Dy0.7Fe2)和TbHoFe2的自旋重取向行为[1],我们可以判定Ho0.3Tb0.3Dy0.4Fe1.93化合物的TSR1和TSR2分别对应于易磁化方向从<111>到<100>和<100>到<110>的转变。在TSR1温度附近,HTDF化合物从R相到T相的转变,在TSR2温度附近,HTDF化合物从T相到O相的转变。图3(b)展示了Ho0.3Tb0.3Dy0.4Fe1.93化合物的DSC曲线,放热峰对应了其RFe2相的居里温度TC,TC约为643 K,低于Tb0.3Dy0.7Fe1.95的TC约为658 K [20]。χ′ac-T和DSC实验表明,重稀土Ho取代Tb和Dy会降低自旋重取向温度TSR1和居里温度TC

Figure 4. Magnetostriction (λ-λ) curves of Ho0.3Tb0.3Dy0.4Fe1.93 compounds at different temperatures as a function of external magnetic field

4. 在不同温度下,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩(λ-λ)作为外磁场的函数曲线

图4展示了在不同温度下,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩(λ-λ)作为外磁场的函数曲线。随着磁场的增加,磁致伸缩(λ-λ)也随之增加,并且在1.5 T的磁场下达到最大值。在温度300 K,3 kOe和10 kOe磁场下,磁致伸缩(λ-λ)分别为810 ppm和1332 ppm。这与先前Wang等人[5]在Tb0.26Dy0.49Ho0.25Fe1.9化合物中发现的在2 kOe和10 kOe的磁致伸缩分别为685 ppm和1120 ppm较为接近。随着温度的降低,在15 kOe磁场下,磁致伸缩(λ-λ)在300 K~181 K的温度范围内大于1300 ppm,在181 K磁致伸缩λ15k达到最大值为1844 ppm。从181 K开始,随着温度的降低,易磁化方向的转变导致磁致伸缩减小,在100 K附近达到最小为1250 ppm。100 K以下,易磁化方向的转变导致磁致伸缩开始上升。不同温度下磁致伸缩随磁场的变化曲线表明,在15 kOe磁场下,在300 K~181 K温度范围,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩(λ-λ)在300 K~181 K的温度范围内大于1300 ppm。

Figure 5. Curves of Ho0.3Tb0.3Dy0.4Fe1.93 compounds with temperature for magnetostrictive (λ-λ) under different external magnetic fields

5. 在不同外磁场下,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩(λ-λ)随温度变化的曲线

在20 K~300 K温度区间内,对Ho0.3Tb0.3Dy0.4Fe1.93化合物进行了磁致伸缩测量。图5显示了在不同外磁场下,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩(λ-λ)随温度的变化。随着温度的降低,磁致伸缩(λ-λ)开始上升,在第一个自旋重取向温度TSR1(181 K)附近达到最优值,此时对应的易磁化方向沿<111>。随着温度的继续降低,在自旋重取向温度TSR1和TSR2之间,磁致伸缩(λ-λ)开始降低,此时易磁化方向沿<100>。在TSR2(66 K)之后,磁致伸缩又略有上升,此时易磁化方向沿<110>。磁致伸缩温度曲线表明,在20 K~300 K温度区间,在3 kOe磁场下,磁致伸缩λ3k ≥ 500 ppm的温度范围是155 K,在10 kOe磁场下,磁致伸缩λ10k ≥ 1000 ppm的温度范围是280 K。变温磁致伸缩表明Ho0.3Tb0.3Dy0.4Fe1.93化合物拥有宽温域磁致伸缩特性。

4. 小结

本文采用真空电弧熔炼法制备了Ho0.3Tb0.3Dy0.4Fe1.93单一Laves相合金。结构分析表明,Ho0.3Tb0.3Dy0.4Fe1.93化合物具有稳定且单一的Laves相,菱方结构使得合金在室温下保持优异磁致伸缩值。磁性研究发现,Ho0.3Tb0.3Dy0.4Fe1.93化合物的居里温度TC为643 K,Ho0.3Tb0.3Dy0.4Fe1.93化合物有两个自旋重取向温度TSR1 (181 K)和TSR2 (66 K),分别对应易磁化方向从<111>到<100>和<100>到<110>的转变。在室温300 K,在3 kOe和10 kOe磁场下,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩(λ-λ)分别为810 ppm和1332 ppm。在15 kOe磁场下,在181 K,Ho0.3Tb0.3Dy0.4Fe1.93化合物磁致伸缩λ15k达到最大值为1844 ppm。在20~300 K温度下,磁致伸缩温度曲线表明,在3 kOe和10 kOe磁场下,Ho0.3Tb0.3Dy0.4Fe1.93合金磁致伸缩λ3k ≥ 500 ppm和λ10k ≥ 1000 ppm的温度范围分别为155 K和280 K。这表明Ho0.3Tb0.3Dy0.4Fe1.93合金具有宽温域磁致伸缩特性。

基金项目

本研究受到了南京航空航天大学研究生科研与实践创新(xexjh20242115)项目的资助。

NOTES

*通讯作者。

参考文献

[1] Clarka, A.E. (1980) Ferromagnetic Materials. North-Holland Publishing Company.
[2] Liu, J., Jiang, C. and Xu, H. (2012) Giant Magnetostrictive Materials. Science China Technological Sciences, 55, 1319-1326.
https://doi.org/10.1007/s11431-012-4810-0
[3] 张洪平, 杜挺, 王龙妹, 等. 稀土——铁系超磁致伸缩材料水声换能器的研制[J]. 金属功能材料, 1995(3): 107-109.
[4] Jiang, C., Zhang, H., Wang, Z. and Xu, H. (2008) Magnetostriction and Hysteresis of ⟨1 1 0⟩ Oriented Tb0.29Dy0.48Ho0.23Fe2 single Crystal. Journal of Physics D: Applied Physics, 41, Article ID: 155012.
https://doi.org/10.1088/0022-3727/41/15/155012
[5] Wang, B., Lv, Y., Li, G., Huang, W., Weng, L. and Cui, B. (2015) The Structure, Magnetostriction, and Hysteresis of (Tb0.3Dy0.7Fe1.9)1−x(Tb0.15Ho0.85Fe1.9)x Alloys. Journal of Applied Physics, 117, 17A912.
https://doi.org/10.1063/1.4916505
[6] Bartashevich, A.M., Gerasimov, E.G., Mushnikov, N.V., Inishev, A.A., Terentev, P.B., Gaviko, V.S., et al. (2022) Structural and Magnetoelastic Properties of Non-Stoichiometric Tbfe2mn Laves Phase. Journal of Alloys and Compounds, 923, Article ID: 166360.
https://doi.org/10.1016/j.jallcom.2022.166360
[7] Politova, G., Mikhailova, A., Morozov, D., Politov, M., Ganin, M. and Filimonov, A. (2023) Magnetic and Magnetostrictive Properties of (Tb, Nd)Fe2 Alloys. 2023 International Conference on Electrical Engineering and Photonics (EExPolytech), St Petersburg, 19-20 October 2023, 308-311.
https://doi.org/10.1109/eexpolytech58658.2023.10318747
[8] Kang, D., Liu, J., Jiang, C. and Xu, H. (2015) Control of Solid-Liquid Interface Morphology and Radial Composition Distribution: TbDyFe Single Crystal Growth. Journal of Alloys and Compounds, 621, 331-338.
https://doi.org/10.1016/j.jallcom.2014.09.106
[9] Shi, Y.G., Tang, S.L., Huang, Y.J., Lv, L.Y. and Du, Y.W. (2007) Anisotropy Compensation and Magnetostriction in TbxNd1-xFe1.9 Cubic Laves Alloys. Applied Physics Letters, 90, Article ID: 142515.
https://doi.org/10.1063/1.2721128
[10] Ren, W.J., Liu, J.J., Li, D., Liu, W., Zhao, X.G. and Zhang, Z.D. (2006) Direct Experimental Evidence for Anisotropy Compensation between Dy3+ and Pr3+ Ions. Applied Physics Letters, 89, Article ID: 122506.
https://doi.org/10.1063/1.2356109
[11] Wun-Fogle, M., Restorff, J.B., Clark, A.E. and Lindberg, J.F. (1998) Magnetization and Magnetostriction of Dendritic [112] TbxDyyHozFe1.95 (x + y + z = 1) Rods under Compressive Stress. Journal of Applied Physics, 83, 7279-7281.
https://doi.org/10.1063/1.367700
[12] 张洪波, 蒋成保, 徐惠彬. ⟨1 1 0⟩取向(TbDyHo)Fe2合金磁致伸缩的窄滞后特性[J]. 金属学报, 2007(11): 1217-1220.
[13] Ding, H., Shi, Y. and Tang, S. (2024) Large Magnetostriction of Nd0.2Tb0.3Dy0.5Fe1.93/Epoxy Composites in a Wide Temperature Range. Journal of Rare Earths, 42, 705-709.
https://doi.org/10.1016/j.jre.2023.02.007
[14] Shi, Y.G., Ding, H.H., Xia, C.R., Ke, X.Q. and Tang, S.L. (2022) Large Magnetostriction over a Wide Temperature Range in a Nd0.2TbxDy0.8−xFe1.93 Laves Compound. Applied Physics Letters, 121, Article ID: 212401.
https://doi.org/10.1063/5.0120137
[15] Wang, B., Cao, S., Huang, W., Sun, Y., Weng, L. and Zhao, Z. (2016) Phase Relationship and Magnetostriction of Tb-Dy-Ho-Fe Alloys. IEEE Transactions on Applied Superconductivity, 26, 1-4.
https://doi.org/10.1109/tasc.2016.2515091
[16] Zhang, H., Pang, Y., Wen, L. and Jiang, C. (2010) Magnetostriction and Hysteresis of <110> Oriented TbDyHoFe1.95 Alloy. Journal of Rare Earths, 28, 403-405.
https://doi.org/10.1016/s1002-0721(10)60332-8
[17] Wun-Fogle, M., Restorff, J.B. and Clark, A.E. (1999) Hysteresis and Magnetostriction of TbxDyyHo1−x−yFe1.95 [112] Dendritic Rods. Journal of Applied Physics, 85, 6253-6255.
https://doi.org/10.1063/1.370127
[18] Wang, B., Lv, Y., Li, G., Huang, W., Sun, Y. and Cui, B. (2014) The Magnetostriction and Its Ratio to Hysteresis for Tb-Dy-Ho-Fe Alloys. Journal of Applied Physics, 115, 17A902
https://doi.org/10.1063/1.4852095
[19] Funayama, T., Kobayashi, T., Sakai, I. and Sahashi, M. (1992) Mn Substitution Effect on Magnetostriction Temperature Dependence in Tb0.3Dy0.7Fe2. Applied Physics Letters, 61, 114-115.
https://doi.org/10.1063/1.107657
[20] Zhang, H., Jiang, C., Zhang, T. and Xu, H. (2007) Magnetostriction and Hysteresis of (Tb0.36Dy0.64)1-XHoXFe1.95 Alloys. SPIE Proceedings, 6423, 1-7.
https://doi.org/10.1117/12.779603
[21] Gao, Z.Q., Guo, W.X., Wang, Z.Y. and Shi, Y.G. (2025) Structure and Magnetostriction in Nd0.25Tb0.3Dy0.45 (Fe0.9B0.1)1.93 Compound. Journal of Alloys and Compounds, 1010, Article ID: 177018.
https://doi.org/10.1016/j.jallcom.2024.177018
[22] Toby, B.H. and Von Dreele, R.B. (2013) GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. Journal of Applied Crystallography, 46, 544-549.
https://doi.org/10.1107/s0021889813003531
[23] Huang, D., Gao, J., Lapidus, S.H., Brown, D.E. and Ren, Y. (2019) Exotic Hysteresis of Ferrimagnetic Transition in Laves Compound TbCo2. Materials Research Letters, 8, 97-102.
https://doi.org/10.1080/21663831.2019.1704454
[24] Dwight, A.E. and Kimball, C.W. (1974) TbFe2, a Rhombohedral Laves Phase. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30, 2791-2793.
https://doi.org/10.1107/s0567740874008156

Baidu
map